Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.

Slides:



Advertisements
Similar presentations
LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Advertisements

Advanced GAmma Tracking Array
Expected counting rates. FRS experimental setup Total load is limited by SC1 and MUSIC1.
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Production and Decay of Sub-U Isotopes by the Projectile Fragmentation of 1 A·GeV 238 U Experiment March, 2003 Zhong Liu University of Edinburgh.
Study of the  -decay of 12 B Proposal to INTC 25th February 2002 SpokespersonH.O.U. Fynbo ContactpersonU.C. Bergmann.
Xy position from LYCCA Slowed down beams - new perspective for GOSIA scattering experiments at relativistic energies.
R&D for R3B/EXL silicon spectrometers, ELISe in-ring instrumentation based on planar Si and CVDD Alexander Gorshkov Flerov Laboratory of Nuclear Reactions.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Fast Timing with Diamond Detectors Lianne Scruton.
Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla  For charged particles  Transmission detectors 
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
23 July 2010FLNR Dubna Summer Students Practice Flerov Laboratory of Nuclear Reactions, JINR, Dubna 2010 JINR, Dubna 2010 Studies with radioactive ion.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
The double-sided silicon strip detector with excellent position, energy and time resolution Bachelorthesis by Eleonora Teresia Gregor.
From CATE to LYCCA Mike Taylor Particle Identification After the Secondary Target.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Experimental part: Measurement the energy deposition profile for U ions with energies E=100 MeV/u - 1 GeV/u in iron and copper. Measurement the residual.
Neutron detector developments at LPC Caen  -delayed neutron detectors  current limitations  future issues Search for new solid scintillators (Neutromania)
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Mariana Petris, CBM Collaboration Meeting, October 13-18, 2008, Dubna Mariana Petris, NIPNE - Bucharest C B M In-Beam Test Results of the Pestov Glass.
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
R&D on complementary detectors and devices for nuclear structure and reaction mechanism studies R&D on complementary detectors and devices for nuclear.
Lund Lund York Cologne Calorimeter present status test results with Thanks to Andreas Wendt !!
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
Direct measurement of the 18 Ne( , p) 21 Na reaction with a GEM – MSTPC Takashi Hashimoto CNS, University of Tokyo Collaborators CNS S. Kubono, H. Yamaguchi,
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
The INFN Italy EXOTIC group Milano, Napoli, Padova, NIPNE Romania, Crakow Poland. Presented by C.Signorini Dept. of Physics and Astronomy Padova (Italy):
Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.
Status on the HYDE project Collaboration: University of Huelva, Spain (coordinator) GSI-Darmstadt, Germany. University of Sevilla, Spain. CSIC-IEM Madrid,
Adam Maj IFJ PAN Krakow Search for Pigmy Dipole Resonance in 68 Ni RISING experiment in GSI EWON Meeting Prague, May, 2007.
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
1 Activation by Medium Energy Beams V. Chetvertkova, E. Mustafin, I. Strasik (GSI, B eschleunigerphysik), L. Latysheva, N. Sobolevskiy (INR RAS), U. Ratzinger.
GEM-MSTPC for direct measurements of astrophysical reaction rates H. Ishiyama 1, K. Yamaguchi 2, Y. Mizoi 3, Y.X. Watanabe 1, T. Hashimoto 4, M.H. Tanaka.
Ancillary/Complementary detectors for the AD at LNL.
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
Fusion excitation measurement for 20 O + 12 C at E/A = 1-2 MeV Indiana University M.J. Rudolph, Z.Q. Gosser, K. Brown ✼, D. Mercier, S. Hudan, R.T. de.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
Data Analysis for 23 Al Experiment Kun Wang. Data Analysis for 23 Al Experiment  Background  Experiment  Reaction cross section  P.I.  Transmission.
Collimation Concept for Beam Halo Losses in SIS 100
Development of beam tracking detector using MicroChannel Plate(MCP)
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Efficiency versus energy resolution
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
DSSSD for b decay investigations of heavy neutron-rich isotopes
Vamos + Exogam Spectrometer
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Variable Mode High Acceptance Spectrometer
Rare Isotope Spectroscopic INvestigation at GSI
Physics cases for tracking
Direct Measurement of the 8Li + d reactions of astrophysical interest
Efficiency versus energy resolution
Rare Isotope Spectroscopic INvestigation at GSI
Status and perspectives of the LNS-FRIBS facility
Implantation detector as active stopper Rakesh Kumar, P. Doornenbal, I
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams at FRS INTAG 2008

Obtain 5 MeV/u to 10 MeV/u RIB to be used for secondary reaction studies at FRS / Super FRS Project objective RIB with sufficient luminosity for slow down experiments at S-FRS INTAG 2008

Development of slowed down beams around the world High-spin states in 48 Ca, using 5 MeV/u 46 Ar beam slowed from 30 MeV/u to 5 MeV/u E. Ideguchi, et al. EPJA 25, 429 (2005) Fusion enhancement with neutron-rich RIB, 32,38 S+ 181 Ta, slowed from 9 MeV/u to ~ 4 MeV/u K.E. Zyromski, et al. PRC 55, R562 (1997) INTAG 2008

Slowed down beams project and FRS Tracking Track the trajectory of each particle before slowing down Track the trajectory of each particle after slowing down Identify the energy of each particle before the secondary target 10 9 pps TA 1 S pps 3x10 6 pps 10 6 pps S4Deg.TA 2 64 Ni 62 Co D1D2D3D4 5MeV/u700MeV/u 62 Co 250 MeV/u INTAG 2008

Simple binary reactions performed with white beam Degrader ~ 5 MeV/u , X,Y Fragments Thin target , dE, E, X,Y ~ 250 MeV/u  Energy straggling  Angular straggling TOF[ns] E [MeV/u] 12 Be  Contaminants from reactions into the degrader Event-by-event tracking INTAG 2008

9 Be(3/2 -,T=3/2)+n p n E  = 14.4 MeV 9 Li(T=3/2)+p 10 Be(T=2)‏ 9 Be(T=1/2)+n 1.57MeV Study IAS of 10 Li in 10 Be and 13 Be in 13 B 12 B(0 +,T=2)+n p n E   = 12.8 MeV 12 Be(T=2)+p 13 B(T=5/2)‏ 12 Be(T=1)+n 10 Li: D.R. Tilley et al. NPA 745 (2004) Be: H. Simon et al. NPA 791 (2007) 267 and Ref. in the papers INTAG 2008

E b (d)‏ E p (E b (d))‏ p-RIB p E p (E b )‏ Yield RIB+p Radioactive Ion Beams(RIBs) and the Thick Target Technique K. P. Artemov, et at., Sov. J. Nucl. Phys., 52 (1990). MSU, Apr 2008 E b -  E b E b +  E b E b =E r E p (E r )‏ p p E b =E r E p (E b )‏ Yield

Simple binary reactions performed with white beam TOF[ns] E [MeV/u] 12 Be  E/E =1%  T=150 ps, for L=1 m E(E b )‏ Yield RIB+p INTAG 2008 Thin/thick target dE, E, X,Y Degrader Fragments ~ 250 MeV/u D5

80% of the 62 Co nuclei “survived” the slow down Contaminants from reactions into the degrader The contaminants from secondary reactions are of the order of compared to the fragment of interest INTAG 2008

Angle after slowing down [mrad] Angular straggling 20 mrad at a distance of 1.5 m  3 cm 10 Mev/u FWHM(10 MeV/u) ~ FWHM(5 MeV/u) ~ 20 mrad Counts INTAG 2008

Estimated upper limit for the Doppler shift due to energy+angular straggling  Scintillator, 100 micron dE   / E   = 0.02  Diamond, 40 micron, no energy loss information dE   / E   = 0.05  Si, 40 micron, 100ps time resolution, energy loss added back dE   / E   = (1% energy resolution)  Secondary Electron Detectors, 150 ps time resolution dE   / E   = E=10 MeV/u L=1.5 m INTAG 2008

Test experiment at FRS Objectives: Investigate the concept with a simple setup Compare simulations to experimental results INTAG 2008 vacuum 62 Co 250 MeV/u Al Degrader 2.7m flight in vacuum SC42(100micron)‏ 10 MeV/u Si(300  m) 14 MeV/u SC41

62 Co E Si [0.5 MeV/ch] TOF(SC41-SC42) [1/40 ns/ch] in: 5x5 cm 2 TOF gate +/- 200 ps  E=620 +/- 9 MeV N( 62 Co into the gate)/N( 62 Co before the degrader) ~ INTAG 2008

Experiment: E(FWHM) ~ 86 MeV Beam size before and after slow-down  X(after)/  X(before) = 2.0+/-0.3 Simulation: E(FWHM) ~ 17 MeV  X(after)/  X(before) = Ni, E(Si) gated on TOF for 10 MeV/u Counts E Si [0.5 MeV/ch] EURORIB

Discrepancy in E(FWHM) 64 Ni 14 MeV/u SC42(100  m)‏ 64 Ni E 1 = 10.1 MeV/u, E 1 (FWHM) = 4 MeV 64 Ni 14 MeV/u SC42(80  m)‏ 64 Ni E 2 = MeV/u, E 2 (FWHM) = 3.8 MeV (E 2 -E 1 ) x 64 = 51 MeV INTAG 2008

MCP 4 x 6 cm, 1.5  m Mylar foil  T(FWHM) ~ 140 ps  X  (FWHM) ~ 3 mm  X fr (FWHM) ~ 1.5 mm   ~ 85 %  fr ~ 100% Electronics: Phillips 715 CFD: walk +/- 75 ps CAEN V1290A TDC, Resolution 25 ps  X(FWHM) ~ 1 mm INTAG 2008

Si fast timing Estimated time resolution  T(FWHM) ~ 100 ps DSSD: 40  m 5x5 cm 2 16x16 strips Coulomb scattering of 48 Ca beam, 12.6 MeV/u at 20 o INTAG 2008

Coulomb excitation 64 Ni, 62 Co Sep-Oct Tracking Track the trajectory of each particle before slowing down 10 9 pps TA 1 S pps 3x10 6 pps 10 6 pps S4Deg.TA 2 64 Ni 62 Co D1D2D3D4 5MeV/u700MeV/u 62 Co 250 MeV/u INTAG 2008

TPC efficiency & resolution spatial resolution: x-direction: ~ 0.1 mm y-direction: ~ 0.05 mm Tested up to 300kHz with Xe beam(500MeV/u)‏ efficiency > 98% up to ~10 4 Hz C. Nociforo, A. Prochazka (GSI)‏ drift space = active volume (20cm x 6,8,10 cm) gas: P10 at atm. pressure delay line read-out 2 x-position measurements 4 y-position measurements Used for high-resolution momentum measurements (~ 1.5 ·10 -4 ) in knockout reactions at the FRS INTAG 2008

Coulomb excitation 64 Ni, 62 Co Sep-Oct INTAG 2008 Collimator MCP2 5 MeV/u  E - E Au- Target MCP1  - detector E

Conclusions Slowed down beam experiment can be performed at FRS / S-FRS The simulations are consistent with the data from the test experiment with 62 Co Fast pre-amplifiers for Si DSSD and MCP detector were built for the future slowed down setup INTAG 2008

Collaboration P.Boutachkov 1, M.Górska 1, J.Gerl 1, H.Geissel 1, I.Kojouharov 1, W.Koenig 1, C.Nociforo 1, W.Prokopowicz 1, H.Schaffner 1, H.Weick 1, N.Kondratiev 2, J.Jolie 3, F.Naqvi 3, J.J.Valiente 4, A.Gadea 4, M.Alvarez 5, I.Muha 5 and the HISPEC/DESPEC collaboration 1.GSI, 2.JINR Dubna, 3. Köln, 4. LNL Italy, 5. Sevilla INTAG 2008 INTAG  EXID