MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

Slides:



Advertisements
Similar presentations
MTH55_Lec-53_Fa08_sec_8-4_Eqns_Quadratic_in_Form.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Advertisements

MTH55_Lec-39_sec_7-2a_Rational_Exponents.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
5-6 Warm Up Lesson Presentation Lesson Quiz
MTH55_Lec-04_Sec_2-1_Fcn_Intro.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-31_sec_6-3_Complex_Rationals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-16_sec_4-2_Compound_Inequalities.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-06_sec_1-3_Graph_Functions.ppt.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-49_sec_8-2_Derive_Quadratic_Eqn.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Licensed Electrical & Mechanical Engineer
MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-22_sec_5-3_GCF-n-Grouping.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-21_sec_5-2_Mult_PolyNoms.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-51_sec_8-3a_Quadratic_Fcn_Graphs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-54_sec_8-5a_PolyNom_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Slide 7- 1 Copyright © 2012 Pearson Education, Inc.
Chapter 10 Exponents & Radicals Phong Chau. Section 10.1 Radical Expressions & Functions.
MTH55_Lec-43_sec_7-4_Add_Sub_Divide_Radicals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-46_sec_7-6b_2Var_Radical_Eqns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-39_sec_7-2a_Rational_Exponents.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-20_sec_5-1_Intro_to_PolyNom_Fcns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-29_Fa08_sec_6-1_Rational_Fcn_Mult-n-Div.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Section 4.2 Rational Exponents.
MTH55_Lec-29_Fa08_sec_6-1_Rational_Fcn_Mult-n-Div.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-28_sec_Jb_Graph_Rational_Functions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-65_Fa08_sec_9-5b_Logarithmic_Eqns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-21_sec_5-2_Mult_PolyNoms.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-25_sec_5-6_Factoring_Strategy.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-31_sec_6-3_Complex_Rationals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-55_sec_8-5b_Rational_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-34_sec_6-6_Rational_Equations.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-22_sec_5-3_GCF-n-Grouping.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Warm-up Simplify each expression
MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-54_sec_8-5a_PolyNom_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-40_sec_7-2b_Rational_Exponents.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Warm Up 10/13 Simplify each expression. 16, (3 2 )
MTH55_Lec-45_7-6a_Radical_Equations.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
EXAMPLE 1 Find nth roots Find the indicated real nth root(s) of a.
MTH55_Lec-48_sec_8-1a_SqRt_Property.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-54_sec_8-5a_PolyNom_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-41_sec_7-3a_Radical_Product_Rule.ppt.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
File = MTH55_Lec-04_ec_2-2_Fcn_Algebra.pp 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
File = MTH55_Lec-04_ec_2-2_Fcn_Algebra.pp 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
§5.6 Factoring Strategies
Licensed Electrical & Mechanical Engineer
Licensed Electrical & Mechanical Engineer
Licensed Electrical & Mechanical Engineer
Section 10.2 Rational Exponents.
§6.3 Complex Rational Fcns
Licensed Electrical & Mechanical Engineer
Radicals and Rational Exponents
§6.3 Complex Rational Fcns
Example 1: Finding Real Roots
Objectives Rewrite radical expressions by using rational exponents.
§5.6 Factoring Strategies
Licensed Electrical & Mechanical Engineer
Licensed Electrical & Mechanical Engineer
Licensed Electrical & Mechanical Engineer
Licensed Electrical & Mechanical Engineer
Presentation transcript:

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §7.1 Cube & nth Roots

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review §  Any QUESTIONS About §7.1 → Square-Roots and Radical Expressions  Any QUESTIONS About HomeWork §7.1 → HW MTH 55

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 3 Bruce Mayer, PE Chabot College Mathematics Cube Root  The CUBE root, c, of a Number a is written as:  The number c is the cube root of a, if the third power of c is a; that is; if c 3 = a, then

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 4 Bruce Mayer, PE Chabot College Mathematics Example  Cube Root of No.s  Find Cube Roots a) b) c)  SOLUTION a) As 0.2·0.2·0.2 = b) As (−13)(−13)(−13) = −2197 c) As 3 3 = 27 and 4 3 = 64, so (3/4) 3 = 27/64

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 5 Bruce Mayer, PE Chabot College Mathematics Cube Root Functions  Since EVERY Real Number has a Cube Root Define the Cube Root Function:  The Graph Reveals Domain = {all Real numbers} Range = {all Real numbers}

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 6 Bruce Mayer, PE Chabot College Mathematics Evaluate Cube Root Functions  Evaluate Cube Root Functions a) b)  SOLUTION (using calculator) b)

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 7 Bruce Mayer, PE Chabot College Mathematics Simplify Cube Roots  For any Real Number, a  Use this property to simplify Cube Root Expressions.  For EXAMPLE  Simplify  SOLUTION because (–3x)(–3x)(–3x) = –27x 3

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 8 Bruce Mayer, PE Chabot College Mathematics n th Roots  nth root: The number c is an n th root of a number a if c n = a.  The fourth root of a number a is the number c for which c 4 = a. We write for the nth root. The number n is called the index (plural, indices). When the index is 2 (for a Square Root), the Index is ommitted.

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 9 Bruce Mayer, PE Chabot College Mathematics Odd & Even n th Roots →  When the index number, n, is ODD the root itself is also called ODD A Cube-Root (n = 3) is Odd. Other Odd roots share the properties of Cube-Roots – the most important property of ODD roots is that we can take the ODD-Root of any Real Number – positive or NEGATIVE –Domain of Odd Roots = (− , +  ) –Range of Odd Roots =(− , +  )

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example  n th Roots of No.s  Find ODD Roots a)b) c)  SOLUTION a) Since 3 5 = 243 b) As (−3)(−3)(−3)(−3)(−3) = −243 c) When the index equals the exponent under the radical we recover the Base

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 11 Bruce Mayer, PE Chabot College Mathematics Odd & Even n th Roots →  When the index number, n, is EVEN the root itself is also called EVEN A Sq-Root (n = 2) is Even. Other Even roots share the properties of Sq-Roots –The most important property of EVEN roots is that we canNOT take the EVEN-Root of a NEGATIVE number. –Domain of Even Roots = {x|x ≥ 0} –Range of Even Roots = {y|y ≥ 0}

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 12 Bruce Mayer, PE Chabot College Mathematics Example  n th Roots of No.s  Find EVEN Roots a)b) c)  SOLUTION a) Since 3 4 = 81 b) Even Root is Not a Real No. c) Use absolute-value notation since m could represent a negative number

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 13 Bruce Mayer, PE Chabot College Mathematics Simplifying n th Roots na Even Positive a NegativeNot a real number |a||a| Odd Positive a Negative a

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 14 Bruce Mayer, PE Chabot College Mathematics Example  Radical Expressions  Find n th Roots a) b) c)  SOLUTION a) b) c)

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 15 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work  Problems From §7.1 Exercise Set 50, 74, 84, 88, 98, 102  Principal n th Root

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 16 Bruce Mayer, PE Chabot College Mathematics All Done for Today SkidMark Analysis Skid Distances

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 17 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 18 Bruce Mayer, PE Chabot College Mathematics Graph y = |x|  Make T-table

MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 19 Bruce Mayer, PE Chabot College Mathematics