Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang 2014. 05. 08.

Slides:



Advertisements
Similar presentations
2e 14g 6i 21c 1b 6a 19b 13d 17c 9c 21e 17d 11i 4b 18d 20d 9i 18f 22f 1g 15d 6c 4d 20a 8a 17h 19c 11e 21a 4j 2f 22b 10d 2a 12f 3e 15h 22c 3a 10k 5j 15a.
Advertisements

Lewis Basic Chiral Phosphine Organocatalysis John Feltenberger Hsung Group University of Wisconsin – Madison January 29, 2009.
CDC Reaction Involving α -C-H Bonds of Nitrogen in Amines 李南
1 Chiral Anion-Mediated Asymmetric Ion Pairing Chemistry Reporter: Zhi-Yong Han
Condensation and Conjugate Addition Reactions of Carbonyl Compounds
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Center for Catalysis Research and Innovation
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin Yasuhiro Uozumi Angew. Chem. Int. Ed. 2009,
Reporter: Yu Ting Huang Advising Prof: Ru Jong Jeng 1.
Boronic Acids and Esters in the Petasis-Borono Mannich Multicomponent Reaction Wu Hua
Masakatsu Shibasaki was born in 1947 in Japan. In 1974 he received his Ph. D. Degree from the University of Tokyo. After then he did postdoctoral studies.
Cyclic Aminal of TsDPEN: Synthesis and Use as Asymmetric Organocatalysts Rina Soni, Silvia Gosiewska, Guy Clarkson, Martin Wills * Department of Chemistry,
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Organo-metal cooperative catalysis
Transition-Metal-Catalyzed Enantioselective Insertion of carbenes or carbenoids into the Heteroatom-Hydrogen Bond Reactions Xiaolei Lian
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
化 学 系 Department of Chemistry Catellani Reaction
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
The Career of Chao-Jun Li Guochang B.S. Zhengzhou University 1979 M.S. Chinese Academy of Science 1985 Tak-Hang ChanTak-Hang Chan Ph.D. McGill.
Iron Catalysed Oxidation Reactions. Moftah Darwish and Martin Wills * * Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. Conclusion:
N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof. Zhu Group, LSPN, EPFL Frontiers in Chemical Synthesis.
Enantioselective Total Synthesis of (+)-Gliocladin C and (+)-Gliocladine C 石枫 Larry E. Overman, Org. Lett., 2007, 9, 339 Larry E. Overman, J.
Chiral Concave N-Heterocyclic Carbenes 3 rd International Summer School “Supramolecular Systems in Chemistry and Biology“ Tim Reimers Kiel, GER.
Cinchona Alkaloids : Efficient Tunable Organocatalyts in Asymmetric Synthesis Antonin Clemenceau
Buchwald-Hartwig Cross Coupling Reaction Reporter: Ying-Chieh CHAO Lecturer: Professor Guey-Sheng Liou Advisor: Professor Ru-Jong Jeng Data:2013/12/27.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
Synthesis and Biological Activity of Platensimycin
High-Oxidation-State Palladium Catalysis 报告人:刘槟 2010 年 10 月 23 日.
Total Synthesis of Communesins Jian-Zhou Huang
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
Total Synthesis of the Antimitotic Bicyclic Peptide Celogentin C
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
1 Chiral Phosphoric Acids-Catalyzed Multi-Component Reactions for Synthesis of Structurally Diverse Nitrogenous Compounds Feng Shi Dec. 18th, 2010.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Rhodium-Catalyzed Chemo- and Regioselective Decarboxylative Addition of β- Ketoacids to Allenes: Efficient Construction of Tertiary and Quaternary Carbons.
The Work Of Pr Karl A. Scheidt Group Department of Chemistry, Northwestern UniVersity, Evanston.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Recycling the Waste: The Development of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836 –6839.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
C-H Insertion Story Justin Du Bois associate professor : University of Stanford B.S. : University of California at Berkeley (1992) Ph.D. : California Institute.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Highly Cited Contributions From EJ Corey John Hayes Group Meeting Special Topic 8/26/15.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Cinchona Alkaloids : Efficient Bifunctional Organocatalyts in Asymmetric Synthesis Antonin Clemenceau Frontiers in Chemical Synthesis PhD in J. Zhu Group.
Palladium-catalysed reactions involving isocyanides Reporter: Xinzheng Chen Supervisor: Prof. David Zhigang Wang
Catalytic Enantioselective Fluorination
Visible light photoredox-controlled reactions of N-radicals
Recent Development in Isocyanide-Based
Guillaume Benoit – Charette Group
Total Synthesis of (±)-Cylindricine C
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems
Enantioselective Total Synthesis of (+)-Gelsemine
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
Abigail G. Doyle, Department of Chemistry, Princeton University
• First practical method for asymmetric hydrocyantion of a 1,3-diene
C-H Insertion of Rhodium-Carbene Using Diazo Compounds
B-Hydroxysalicylhydrazones: Chiral, non-racemic tridentate catalysts for asymmetric synthesis Shawn R. Hitchcock, Department of Chemistry, Illinois State.
Copper Catalyzed C-N Bond Formation Using O-Acyl Hydroxylamine
Carbon Monoxide “Insertion”
Shawn R. Hitchcock, Department of Chemistry, Illinois State University
Presentation transcript:

Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang

Introduction-Keiji Maruoka 2 Education B. S. Department of Industrial Chemistry, School of Engineering, Kyoto University 1976 Ph.D Department of Chemistry, University of Hawaii 1980 (with Prof. Hisashi Yamamoto) Professional Appointments Assistant Professor School of Engineering, Nagoya University Lecturer School of Engineering, Nagoya University Associate Professor School of Engineering, Nagoya University Professor Graduate School of Science, Hokkaido University Professor Graduate School of Science, Kyoto University and Hokkaido University 2001-present Professor Graduate School of Science, Kyoto University Prof. Keiji Maruoka

Research Career 3 Chiral Phase Transfer Catalysts Alkylations Enantioselective Synthesis of Amino Acids Other Alkylations N-Alkylations Asymmetric Conjugate Addition Asymmetric Amination Aldol Reaction Epoxidation Cyanation Chiral Organocatalysts Biaryl-Based Secondary Amine Catalysts Axially Chiral Dicarboxylic Acid Catalysts Bidentate Lewis Acid Catalysts

Research Career 4 Chiral Phase Transfer Catalysts Alkylations Enantioselective Synthesis of Amino Acids Other Alkylations N-Alkylations Asymmetric Conjugate Addition Asymmetric Amination Aldol Reaction Epoxidation Cyanation Chiral Organocatalysts Biaryl-Based Secondary Amine Catalysts Axially Chiral Dicarboxylic Acid Catalysts Bidentate Lewis Acid Catalysts

Chiral Phase Transfer Catalysts 5

General mechanism 6 T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222.

Enantioselective Synthesis of α-Amino Acids 7 B. Lygo, P. G. Wainwright, Tetrahedron Lett. 1997, 38, 8595.

Enantioselective Synthesis of α-Amino Acids 8 T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 1999, 121, 6519.

Enantioselective Synthesis of α-Amino Acids 9 T. Ooi, Y. Uematsu, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, T. Ooi, Y. Uematsu, M. Kameda, K. Maruoka, Tetrahedron 2006, 62,

Enantioselective Synthesis of α-Amino Acids 10 M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, Tetrahedron Lett. 2008, 49, M. Kitamura, S. Shirakawa, Y. Arimura, X. Wang, K. Maruoka, Chem. Asian J. 2008, 3, 1702.

Enantioselective Synthesis of α-Amino Acids 11 M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, Tetrahedron Lett. 2008, 49, M. Kitamura, S. Shirakawa, Y. Arimura, X. Wang, K. Maruoka, Chem. Asian J. 2008, 3, 1702.

Asymmetric α,α-Dialkyl-α-Amino Acids Synthesis 12 T. Ooi, M. Takeuchi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2000, 122, 5228.

Other Alkylations 13 T. Ooi, K. Fukumoto, K. Maruoka, Angew. Chem. Int. Ed. 2006, 45, 3839.

Other Alkylations 14 T. Hashimoto, K. Sakata, K. Maruoka, Angew. Chem. Int. Ed. 2009, 48, 5014.

N-Alkylations 15 S. Shirakawa, K. Liu, K. Maruoka, J. Am. Chem. Soc. 2012, 134, 916. >>

Asymmetric Conjugate Addition 16 R. He, C. Ding, K. Maruoka, Angew. Chem. Int. Ed. 2009, 48, 4559.

Asymmetric Conjugate Addition 17 R. He, S. Shirakawa, K. Maruoka, J. Am. Chem. Soc. 2009, 131,

Asymmetric Conjugate Addition 18 X.Wang,M. Kitamura, K. Maruoka, J. Am. Chem. Soc. 2007, 129, Q. Lan, X. Wang, K. Maruoka, Tetrahedron Lett. 2007, 48, 4675

Asymmetric Amination 19 R. He, X. Wang, T. Hashimoto, K. Maruoka, Angew. Chem. Int. Ed. 2008, 47, R.He, K. Maruoka, Synthesis 2009, 2289.

Asymmetric Amination 20 L. Wang, S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2011, 50, 5327.

Aldol Reaction 21 T. Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, 4542.

Epoxidation 22 T. Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, T. Ooi, M. Kameda, M. Taniguchi, K. Maruoka, J. Am. Chem. Soc. 2004, 126, X-ray structure of 13-PF 6 (N, blue; O, red; PF 6, green)

Cyanation 23 T. Ooi, Y. Uematsu, K. Maruoka, J. Am. Chem. Soc. 2006, 128, T. Ooi, Y. Uematsu, J. Fujimoto, K. Fukumoto, K. Maruoka, Tetrahedron Lett. 2007, 48, 1337.

Research Career 24 Chiral Phase Transfer Catalysts Alkylations Enantioselective Synthesis of Amino Acids Other Alkylations N-Alkylations Asymmetric Conjugate Addition Asymmetric Amination Aldol Reaction Epoxidation Cyanation Chiral Organocatalysts Biaryl-Based Secondary Amine Catalysts Axially Chiral Dicarboxylic Acid Catalysts Bidentate Lewis Acid Catalysts

Chiral Secondary Amine Catalysts 25 T. Kano, K. Maruoka, Chem. Sci. 2013, 4, 907. Typical secondary amine catalysts derived from proline :

Biaryl-Based Secondary Amine Catalysts 26 T. Kano, K. Maruoka, Chem. Sci. 2013, 4, 907. Typical chiral biaryl-based secondary amine catalysts :

Aldol Reaction 27 T. Urushima, Y. Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, Anti-selective aldol reaction of glyoxylate :

Aldol Reaction 28 Anti-selective aldol reaction of glyoxylate : Syn-selective aldol reaction of glyoxylate and glyoxamide : T. Urushima, Y. Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, T. Kano, A. Noishiki, R. Sakamoto, K. Maruoka, Chem. Commun. 2011, 47,

Aldol Reaction 29 Anti-selective aldol reaction of glyoxylate : T. Urushima, Y. Yasui, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, T. Kano, A. Noishiki, R. Sakamoto, K. Maruoka, Chem. Commun. 2011, 47, Syn-selective aldol reaction of glyoxylate and glyoxamide :

Cross-Aldol Reaction 30 T. Kano, H. Sugimoto, K. Maruoka, J. Am. Chem. Soc. 2011, 133,

Mannich Reaction 31 J. W. Yang, C. Chandler, M. Stadler, D. Kampen, B. List, Nature, 2008, 452, 453. T. Kano, Y. Yamaguchi, K. Maruoka, Angew. Chem., Int. Ed., 2009, 48, Suppression of undesired aldol reactions :

Conjugate Addition 32 M. E. Kuehne, P. J. Reider, J. Org. Chem. 1985, 50, T. Kano, F. Shirozu, K. Tatsumi, Y. Kubota, K. Maruoka, Chem. Sci. 2011, 2, Suppression of catalyst consumption :

α-Hydroxyamination of Aldehydes 33 G. Zhong, Angew. Chem., Int. Ed. 2003, 42, T. Kano, M. Ueda, J. Takai, K. Maruoka, J. Am. Chem. Soc. 2006, 128, α-Hydroxyamination of aldehydes : α-Aminoxylation of aldehydes : Plausible transtion state models :

Research Career 34 Chiral Phase Transfer Catalysts Alkylations Enantioselective Synthesis of Amino Acids Other Alkylations N-Alkylations Asymmetric Conjugate Addition Asymmetric Amination Aldol Reaction Epoxidation Cyanation Chiral Organocatalysts Biaryl-Based Secondary Amine Catalysts Axially Chiral Dicarboxylic Acid Catalysts Bidentate Lewis Acid Catalysts

Axially Chiral Dicarboxylic Acid Catalysts 35 T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2007, 129, Mannichi-type addition of diazo compounds : Locking the direction of the acidic OH group Establishing the efficient chiral environment

Axially Chiral Dicarboxylic Acid Catalysts 36 T. Hashimoto, N. Uchiyama, K. Maruoka, J. Am. Chem. Soc. 2008, 130, Trans-selective aziridination : Locking the direction of the acidic OH group Establishing the efficient chiral environment

Axially Chiral Dicarboxylic Acid Catalysts 37 T. Hashimoto, M. Hirose, K. Maruoka, J. Am. Chem. Soc. 2008, 130, Imino-azaenamine reaction : Locking the direction of the acidic OH group Establishing the efficient chiral environment

Research Career 38 Chiral Phase Transfer Catalysts Alkylations Enantioselective Synthesis of Amino Acids Other Alkylations N-Alkylations Asymmetric Conjugate Addition Asymmetric Amination Aldol Reaction Epoxidation Cyanation Chiral Organocatalysts Biaryl-Based Secondary Amine Catalysts Axially Chiral Dicarboxylic Acid Catalysts Bidentate Lewis Acid Catalysts

39 H. Hanawa, T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2003, 125, Bis-Titanium Chiral Lewis Acid Catalyst :

Bidentate Lewis Acid Catalysts 40 H. Hanawa, T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2003, 125, T. Kano, T. Hashimoto, K. Maruoka, J. Am. Chem. Soc. 2005, 127, Bis-Titanium Chiral Lewis Acid Catalyst :

Conclusion 41 By using "design of catalysts as artificial enzymes" and "environmentally-benign organic synthesis" as two important key-words, the synthetic organic chemistry laboratory focuses on the following topics: 1 Design of Chiral Phase Transfer Catalysts for Practical Amino Acid Synthesis 2 Design of Chiral Organocatalysts for Practical Asymmetric Synthesis 3 Development of Bidentate Lewis Acid Chemistry and Application to Selective Organic Synthesis

42