Doc.: IEEE 802.11-13/0364r1 SubmissionEldad Perahia, Intel CorporationSlide 1 Date: 2013-03-20 Authors: Antenna Array Gain from Measured Data for 802.11n/ac.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /1282r0 Submission November 2010 Eldad Perahia, Intel CorporationSlide 1 PLCP Rx Procedure Date: Authors:
Advertisements

Interference Cancellation for Downlink MU-MIMO
Submission March 2012 doc.: IEEE Slide 1 SINR and Inter-STA Interference Indication Feedback in DL MU-MIMO Date: Authors:
Doc.: IEEE /1234r0 Submission November 2009 Sameer Vermani, QualcommSlide 1 Interference Cancellation for Downlink MU-MIMO Date: Authors:
Submission doc.: IEEE /0296r0 March 2015 Cagatay Capar, EricssonSlide 1 Long range indoor channel measurements for the 60 GHz band Date:
Doc.: IEEE /0630r0 Submission May 2015 Intel CorporationSlide 1 Verification of IEEE ad Channel Model for Enterprise Cubical Environment.
Submission doc.: IEEE / 0431 r0 March 2015 Dmitry Cherniavsky, SiBEAM, Inc.Slide 1 Shared MIMO Architecture for ay. Date: Authors:
CSI Feedback for MIMO-OFDM Transmission in IEEE aj (45 GHz)
Doc.: IEEE /1420r1Nov 2014 Submission Po-Kai Huang (Intel) Slide 1 The Impact of Preamble Error on MAC System Performance Date: NameAffiliationsAddressPhone .
July 2015 doc.: IEEE /XXXXr0 July 2015
Submission doc.: IEEE /0808 July 2015 Songnam Hong, EricssonSlide 1 Frequency-independent Digital Precoder for Hybrid MIMO Precoding Date:
Doc.: IEEE /0538r0 Submission May 2009 Eldad Perahia, Intel CorporationSlide 1 Investigation into the n Doppler Model Date: Authors:
Submission doc.: IEEE 11-12/0844r0 Slide 1 Non-linear Multiuser MIMO for next generation WLAN Date: Authors: Shoichi Kitazawa, ATR.
Doc.: IEEE /1361r3 Submission Channel Measurement for IEEE aj (45 GHz) Date: Authors/contributors: Haiming Wang (SEU)Slide 1.
Doc.: IEEE /0323r1 Submission March 2009 Vinko Erceg, BroadcomSlide 1 TGad Channel Model Requirements Date: Authors:
Capacity Variation of Indoor Radio MIMO Systems Using a Deterministic Model A. GrennanDIT C. DowningDIT B. FoleyTCD.
1 PROPAGATION ASPECTS FOR SMART ANTENNAS IN WIRELESS SYSTEMS JACK H. WINTERS AT&T Labs - Research Red Bank, NJ July 17,
Doc.: IEEE /0493r1 Submission May 2010 Changsoon Choi, IHP microelectronicsSlide 1 Beamforming training for IEEE ad Date: Authors:
Submission doc.: IEEE /0416r1 Slide 1 Broadband Indoor TVWS Channel Measurement and Characterization at 670 MHz Date: Mar 2012 Ming-Tuo.
Submission doc.: IEEE /0627r0 May 2015 Hakan Persson, EricssonSlide 1 Beam Selection for Hybrid MIMO Precoding Date: Authors:
Doc.: IEEE /1081r0 SubmissionSayantan Choudhury HEW Simulation Methodology Date: Sep 16, 2013 Authors: Slide 1.
Doc.: IEEE /0336r0 Submission March 2009 Alexander Maltsev, Intel CorporationSlide 1 Conference Room Channel Model for 60 GHz WLAN Systems - Summary.
Doc.: IEEE /1011r0 Submission September 2009 Alexander Maltsev, IntelSlide 1 Verification of Polarization Impact Model by Experimental Data Date:
Doc.: IEEE /0553r1 Submission May 2009 Alexander Maltsev, Intel Corp.Slide 1 Path Loss Model Development for TGad Channel Models Date:
Doc.: IEEE /0431r0 Submission April 2009 Alexander Maltsev, Intel CorporationSlide 1 Polarization Model for 60 GHz Date: Authors:
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Doc.: IEEE /0562r0 Submission May 2011 Eldad Perahia, Intel CorporationSlide 1 CCA – CID 537 discussion Date: Authors:
Doc.: IEEE /0493r0 Submission May 2010 Changsoon Choi, IHP microelectronicsSlide 1 Beamforming training for IEEE ad Date: Authors:
Doc.: IEEE /1222r1 Submission November 2009 Eldad Perahia, Intel CorporationSlide 1 Hard Disk Drive Traffic Model for TGad Date: Authors:
November 2015 doc.: IEEE /XXXXr0 November 2015
Doc.: IEEE /1145r0 Submission September 2015 Intel CorporationSlide 1 SU-MIMO Configurations for IEEE ay Date: Authors:
Submission doc.: IEEE /1094 Overview and discussion about the next steps for ay channel modeling Date: Authors: Slide 1.
Doc.: IEEE /2215r4 Submission August 2007 Ganesh Venkatesan, Intel CorporationSlide 1 Proposal –Radio Resource Measurement Capability Enabled.
Doc.: IEEE /1044r0 Submission September 2008 Alexander Maltsev, IntelSlide 1 60 GHz WLAN Experimental Investigations Date: Authors:
Submission doc.: IEEE /1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: Authors:
Submission doc.: IEEE 11-13/1401r0 Nov Josiam, Kuo, Taori et.al., SamsungSlide 1 System Level Assessments for Outdoor HEW Deployments Date: YYYY-MM-DD.
Doc.: IEEE /0632r0 Submission May 2015 Intel CorporationSlide 1 Experimental Measurements for Short Range LOS SU-MIMO Date: Authors:
Doc.: IEEE /0112r2 Submission January, 2010 Hirokazu Sawada, Tohoku UniversitySlide 1 [Intra-cluster response model and parameter for channel.
Doc.: IEEE Submission Nov 2014 Link Budget Analysis for 40-50GHz Indoor Usage Date: Authors: Slide 1Jianhan Liu, Mediatek Inc.
Doc.: IEEE /2446r0 Submission September 2007 Eldad Perahia, Intel CorporationSlide 1 MIB Attributes for 40 MHz Scanning in 2.4 GHz Date:
Doc.: IEEE /0889r3 Submission June 2014 Nihar Jindal, Broadcom Performance Gains from CCA Optimization Date: Authors: Slide 1.
Doc.: IEEE /0535r0 Submission May 2008 Thomas Kenney, Minyoung Park, Eldad Perahia, Intel Corp. Slide 1 PHY and MAC Throughput Analysis with 80.
Doc.: IEEE /1121r0 Submission November 2009 I. Siaud, Orange LabsSlide 1 Path Loss Models for TGad Channel Models: Antenna and Dispersion Impact.
Doc.: IEEE /559r0 Submission May 2009 Minyoung Park, Intel Corp.Slide 1 Analysis on IEEE c coexistence scheme Date: Authors:
Doc.: IEEE /0015r1 Submission Large-Scale Characteristics of 45 GHz Based on Channel Measurement Authors/contributors: Date: Presenter:
Doc.: IEEE /0499r1 Submission May 2009 Eldad Perahia, Intel CorporationSlide 1 Simulation Scenario Floor Plans Date: Authors:
Doc.: IEEE /1209r0 Submission Hotel lobby SU-MIMO channel modeling: 2x2 golden set generation Date: September 2016 Alexander Maltsev,
Doc.: IEEE /0664r0 Submission May 2010 Alexander Maltsev, Intel TGad Channel Model Update Authors: Date:
TGad Channel Model Requirements
TGad interference modeling for MAC simulations
Channel Measurement for IEEE aj (45 GHz)
On Tap Angular Spread and Kronecker Structure of WLAN Channel Models
Small-Scale Characteristics of 45 GHz Based on Channel Measurement
Maximum Tone Grouping Size for ax Feedback
Maximum Tone Grouping Size for ax Feedback
Large-Scale Characteristics of 45 GHz Based on Channel Measurement
Channel Coherence Time
Maximum Tone Grouping Size for ax Feedback
Update on “Channel Models for 60 GHz WLAN Systems” Document
Overview of CWPAN SG5 QLINKPAN
doc.: IEEE <doc#>
January, 2010 [Intra-cluster response model and parameter for channel modeling at 60GHz (Part 3)] Date: Authors: Hirokazu Sawada, Tohoku University.
Reuse of TGn Channel Model for SDMA in TGac
White Space Regulatory Issues
Doppler Measurements for Mobile Devices
Simulation Scenario Floor Plans
TGad Task Group Document Open Items
PHY Performance Evaluation with 60 GHz WLAN Channel Models
Channel Modeling with PAA Orientations
Presentation transcript:

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 1 Date: Authors: Antenna Array Gain from Measured Data for n/ac TxBF March 2013

doc.: IEEE /0364r1 Submission Abstract Theoretical calculation of antenna array gain is 10*log10(# of antenna elements) With n/ac MIMO/OFDM transmit beamforming (TxBF), antenna weights matrices are computed on a subcarrier basis In a multipath environment, while the TxBF PER performance gain will be substantial, the composite effective array gain will be much less than 10log10(N) Eldad Perahia, Intel CorporationSlide 2 March 2013

doc.: IEEE /0364r1 Submission Measurements in an Office Environment Measurements captured in n test bed deployed on one floor of an occupied indoor office environment – Dimensions of the floor of the building are 90 ft X 90 ft (~27.4 m X 27.4 m) – In center of floor are labs, elevators, and a kitchen area – Along the walls are workspaces with groups of cubicles and conference rooms – Numbered circles indicate device locations Eldad Perahia, Intel CorporationSlide 3

doc.: IEEE /0364r1 Submission Measurement Device Description Devices are actual n stations consisting of a desktop PC with an Intel Wi-Fi Wireless Link 5300 radio card and external antennas – 3 Tx antennas, 3 Rx antennas, 3 stream packet format – 5 GHz transmission on an empty channel Eldad Perahia, Intel CorporationSlide 4

doc.: IEEE /0364r1 Submission Captured Measurements CSI is measured by having each device in turn transmit a stream of n packets, while all the other devices on the floor receive the packets – Packets are transmitted every 0.8 ms – 3000 packets – measured from the long training field of each packet – 3x3 CSI matrix Received signal level data and noise level data also captured – Used to compute received SNR Eldad Perahia, Intel CorporationSlide 5

doc.: IEEE /0364r1 Submission Antenna Gain Calculation 3x1 TxBF weights computed from CSI for each of the receive antennas Computation performed on each packet Antenna gain computed from weights as shown on next slide Computing statistics: –antenna gain computed over 360 deg azimuth and 90 deg elevation for each subcarrier –Average antenna gain (linear) computed over all subcarriers for each angle –Maximum antenna gain found over all angles –Repeat for each time instance and CDF formed –Antenna gain reported at 50% and 90% probability point of CDF Eldad Perahia, Intel CorporationSlide 6

doc.: IEEE /0364r1 Submission Transmission at angle φ, θ Eldad Perahia, Intel CorporationSlide 7

doc.: IEEE /0364r1 Submission Summary of Array Gain Results (90% Prob) Morning measurementAfternoon measurement SRCDestRx ant 1Rx ant 2Rx ant 3Rx ant 1Rx ant 2Rx ant dB2.3 dB1.7 dB2.5 dB2.6 dB2.0 dB dB3.2 dB3.0 dB2.0 dB3.0 dB1.0 dB dB2.1 dB2.3 dB1.5 dB2.2 dB2.5 dB dB2.9 dB2.7 dB1.6 dB2.4 dB2.0 dB dB3.3 dB2.1 dB2.7 dB3.5 dB2.0 dB dB2.3 dB 1.9 dB1.6 dB2.3 dB dB1.9 dB3.4 dB2.3 dB2.1 dB1.6 dB dB2.3 dB2.0 dB3.4 dB2.1 dB dB2.5 dB1.9 dB2.6 dB2.5 dB2.7 dB dB2.5 dB1.5 dB 2.9 dB2.3 dB dB1.9 dB0.9 dB1.1 dB1.8 dB2.1 dB dB3.1 dB2.3 dB1.9 dB1.2 dB2.4 dB dB2.0 dB2.8 dB1.5 dB2.1 dB2.7 dB Eldad Perahia, Intel CorporationSlide 8

doc.: IEEE /0364r1 Submission Summary of Array Gain Results (50% Prob) Morning measurementAfternoon measurement SRCDestRx ant 1Rx ant 2Rx ant 3Rx ant 1Rx ant 2Rx ant dB1.6 dB1.1 dB2.2 dB2.3 dB1.6 dB dB2.6 dB1.2 dB1.8 dB2.9 dB0.8 dB dB1.4 dB1.8 dB1.0 dB1.5 dB1.8 dB dB2.3 dB2.2 dB1.6 dB2.2 dB1.7 dB dB3.1 dB1.9 dB2.5 dB3.0 dB1.1 dB dB1.8 dB2.2 dB1.7 dB1.3 dB2.2 dB dB1.9 dB3.4 dB1.7 dB1.3 dB1.1 dB dB2.1 dB2.0 dB3.4 dB2.0 dB dB 1.4 dB2.4 dB 2.6 dB dB2.1 dB1.2 dB0.9 dB2.4 dB1.4 dB dB1.3 dB0.6 dB0.8 dB1.4 dB1.7 dB dB2.6 dB2.2 dB1.7 dB1.1 dB2.4 dB dB1.5 dB2.3 dB1.1 dB1.7 dB2.3 dB Eldad Perahia, Intel CorporationSlide 9

doc.: IEEE /0364r1 Submission Observations Array gain for 3 TX antennas is typically less that 3 dBi Results can vary quite a bit even between RX antennas Large variation in time –2-3 dB variation can occur over 2.5 sec Results vary from morning measurements to afternoon measurements 90 th percentile (spatially) over 50 percentile (temporal) gain values (slide 8) –= 2.7 dB –2 dB less than 10log(3) Eldad Perahia, Intel CorporationSlide 10

doc.: IEEE /0364r1 Submission EXAMPLE ANALYSIS Eldad Perahia, Intel CorporationSlide 11

doc.: IEEE /0364r1 Submission SRC = 1; Dest = 5 RX antenna 1 Eldad Perahia, Intel CorporationSlide 12

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 13

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 14

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 15

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 16

doc.: IEEE /0364r1 Submission max array gain over angles for each time instance; CDF over all instances Eldad Perahia, Intel CorporationSlide 17

doc.: IEEE /0364r1 Submission SRC = 1; Dest = 5 RX antenna 2 Eldad Perahia, Intel CorporationSlide 18

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 19

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 20

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 21

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 22

doc.: IEEE /0364r1 Submission max array gain over angles for each time instance; CDF over all instances Eldad Perahia, Intel CorporationSlide 23

doc.: IEEE /0364r1 Submission SRC = 1; Dest = 5 RX antenna 3 Eldad Perahia, Intel CorporationSlide 24

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 25

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 26

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 27

doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 28

doc.: IEEE /0364r1 Submission max array gain over angles for each time instance; CDF over all instances Eldad Perahia, Intel CorporationSlide 29