Quiz on the math needed today What is the result of this integral:

Slides:



Advertisements
Similar presentations
Electric Charges and Electric Fields
Advertisements

Chapter 22 Electric Potential.
Physics 121: Electricity & Magnetism – Lecture 5 Electric Potential Dale E. Gary Wenda Cao NJIT Physics Department.
Chapter 25 Electric Potential
Chapter 25 Electric Potential.
Norah Ali Al-moneef king saud university
Ch 25 – Electric Potential
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism b. Electric Potential.
Electric Forces and Electric Fields
AP Physics: Electricity & Magnetism
1 Lecture 4 Electric Potential and/ Potential Energy Ch. 25 Review from Lecture 3 Cartoon - There is an electric energy associated with the position of.
Lecture 3 Electrical Energy Chapter 16.1  16.5 Outline Potential Difference Electric Potential Equipotential Surface.
-Electric Potential due to a Charged Conductor -The Millikan Oil Drop Experiment -Applications of Electrostatics AP Physics C Mrs. Coyle.
Electric Energy and Capacitance
1/23/07184 Lecture 91 PHY 184 Spring 2007 Lecture 9 Title: The Electric Potential.
Chapter 16 Electric Energy and Capacitance. Question I Three equal positive charges are placed on the x-axis, one at the origin, one at x = 2 m, and the.
Bright Storm on Electric Field (Start to minute 6:18)
Chapter 24. Electric Potential
Electrical Energy and Capacitance
Chapter 25 Electric Potential Electrical Potential and Potential Difference When a test charge is placed in an electric field, it experiences a.
Lecture 3 Electric Field Electric Field Lines Conductors in Electrostatic Equilibrium Millikan’s Oil-Drop Experiment Van de Graff Generator Electric Flux.
AP Physics III.A Electrostatics Origin of Electricity.
Electrostatics: Coulomb’s Law & Electric Fields. Electric Charges  There are two kinds of charges: positive (+) and negative (-), with the following.
Electrical Energy and Potential IB Physics. Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to.
1 Electric Potential Reading: Chapter 21 Chapter 21.
AP Physics III.A Electrostatics Origin of Electricity.
ELECTRIC POTENTIAL September 19, 2008 Picture a Region of space Where there is an Electric Field Imagine there is a particle of charge q at some location.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 22: Electric Potential
Electric Energy and Capacitance
Electric Field Physics Overview Properties of Electric Charges Charging Objects by Induction Coulomb’s Law The Electric Field Electric Field Lines.
The Electric Potential
110/29/2015 Physics Lecture 4  Electrostatics Electric flux and Gauss’s law Electrical energy potential difference and electric potential potential energy.
What will the electric field be like inside the cavity? 1. There is no charge inside the gaussian surface so E = 0 2. There is no net flux through the.
Chapter 25 Electric Potential.
Chapter 25 Electric Potential. Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will.
Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lecture prepared by Richard Wolfson Slide Electric.
Obtaining Electric Field from Electric Potential Assume, to start, that E has only an x component Similar statements would apply to the y and z.
Electric Potential & Electric Potential Energy. Electric Potential Energy The electrostatic force is a conservative (=“path independent”) force The electrostatic.
AP Physics C Montwood High School R. Casao
CHAPTER 25 : ELECTRIC POTENTIAL
Electrical Energy And Capacitance
AP Physics III.A Electrostatics Origin of Electricity Just two types of charge Magnitude of charge of an electron is the same as that of a proton.
Electrical Energy and Potential
今日課程內容 CH21 電荷與電場 電場 電偶極 CH22 高斯定律 CH23 電位.
ELECTRIC POTENTIAL Spring, 2008 Chapter 24 Electric Potential In this chapter we will define the electric potential ( symbol V ) associated with the.
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
-Electric Potential Energy -Electric Potential AP Physics C Mrs. Coyle.
Lecture 19 Electric Potential
Chapter 25 – Electric Potential
Electric Potential.
Chapter 25 Electric Potential. Electrical Potential Energy The electrostatic force is a conservative force, thus It is possible to define an electrical.
1 Electric Potential Reading: Chapter 29 Chapter 29.
Oct. 4, From last time(s)… Work, energy, and (electric) potential Electric potential and charge Electric potential and electric field. Electric charges,
Chapter 25 Electric Potential. Like gravity, the electric force is conservative: it has a Potential Energy. A charge in an electric field has electric.
Electrostatics Fields Refresher Electrical Potential Potential Difference Potential Blame it on the old folks.
Chapter 25 Electric Potential 25.1 Potential Difference and Electric Potential 25.2 Potential Differences in a Uniform Electric Field 25.3 Electric Potential.
1 Chapter 25 Electric Potential. 2 Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force F = q o E The.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Chapter 25 Electric Potential.
Electric Potential A difference in electrical potential between the upper atmosphere and the ground can cause electrical discharge (motion of charge).
Chapter 18 Electric Potential
Chapter 25 Electric Potential.
Chapter 25 Electric Potential.
Fig 25-CO Processes occurring during thunderstorms cause large differences in electric potential between a thundercloud and the ground. The result of this.
Chapter 25 Electric Potential.
Electric Energy and Capacitance
Chapter 29 Electric Potential Reading: Chapter 29.
Chapter 25 - Summary Electric Potential.
Presentation transcript:

Quiz on the math needed today What is the result of this integral:

Chapter 25 Electric Potential

A review of gravitational potential B When object of mass m is on ground level B, we define that it has zero gravitational potential energy. When we let go of this object, if will stay in place. When this object is moved to elevation A, we say that it has gravitational potential energy mgh. h is the distance from B to A. When we let go of this object, if will fall back to level B. A When this object is at elevation A, it has gravitational potential energy U A -U B = mgh. U A is the potential energy at point A with reference to point B. When the object falls from level A to level B, the potential energy change: ΔU =U B -U A The gravitational force does work and causes the potential energy change: W = mgh = U A -U B = -ΔU h mg We also know that the gravitational force is conservative: the work it does to the object only depends on the two levels A and B, not the path the object moves.

Introduction of the electric potential, a special case: the electric field is a constant. When a charge q 0 is placed inside an electric field, it experiences a force from the field: When the charge is released, the field moves it from A to B, doing work: If we define the electric potential energy of the charge at point A U A and B U B, then: If we define U B =0, then U A = q 0 Ed is the electric potential energy the charge has at point A. We can also say that the electric field has an electric potential at point A. When a charge is placed there, the charge acquires an electric potential energy that is the charge times this potential.

Electric Potential Energy, the general case When a charge is moved from point A to point B in an electric field, the charge’s electric potential energy inside this field is changed from U A to U B : The force on the charge is: So we have this final formula for electric potential energy and the work the field force does to the charge: When the motion is caused by the electric field force on the charge, the work this force does to the charge cause the change of its electric potential energy, so:

Electric Potential Energy, final discussion Electric force is conservative. The line integral does not depend on the path from A to B; it only depends on the locations of A and B. A B Line integral paths

The electric potential energy of a charge q 0 in the field of a charge Q? Q q0q0 R Reference point: We usually define the electric potential of a point charge to be zero (reference) at a point that is infinitely far away from the point charge. Applying this formula: Where point A is where the charge q 0 is, point B is infinitely far away. And the result is a scalar! So the final answer is

Electric Potential, the definition The potential energy per unit charge, U/q o, is the electric potential The potential is a characteristic of the field only The potential energy is a characteristic of the charge-field system The potential is independent of the value of q o The potential has a value at every point in an electric field The electric potential is As in the potential energy case, electric potential also needs a reference. So it is the potential difference ΔV that matters, not the potential itself, unless a reference is specified (then it is again ΔV).

Electric Potential, the formula The potential is a scalar quantity Since energy is a scalar As a charged particle moves in an electric field, it will experience a change in potential

Potential Difference in a Uniform Field The equations for electric potential can be simplified if the electric field is uniform: When: This is to say that electric field lines always point in the direction of decreasing electric potential

Electric Potential, final discussion The difference in potential is the meaningful quantity We often take the value of the potential to be zero at some convenient point in the field Electric potential is a scalar characteristic of an electric field, independent of any charges that may be placed in the field

Electric Potential, electric potential energy and Work When there is electric field, there is electric potential V. When a charge q 0 is in an electric field, this charge has an electric potential energy U in this electric field: U = q 0 V. When this charge q 0 is move by the electric field force, the work this field force does to this charge equals the electric potential energy change -ΔU: W = -ΔU = -q 0 ΔV.

Units The unit for electric potential energy is the unit for energy joule (J). The unit for electric potential is volt (V): 1 V = 1 J/C This unit comes from U = q0 V (here U is electric potential energy, V is electric potential, not the unit volt) It takes one joule of work to move a 1-coulomb charge through a potential difference of 1 volt But from We also have the unit for electric potential as 1 V = 1 (N/C)m So we have that 1 N/C (the unit of ) = 1 V/m This indicates that we can interpret the electric field as a measure of the rate of change with position of the electric potential

Electron-Volts, another unit often used in nuclear and particle physics Another unit of energy that is commonly used in atomic and nuclear physics is the electron-volt One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt 1 eV = 1.60 x J

Direction of Electric Field, energy conservation As pointed out before, electric field lines always point in the direction of decreasing electric potential So when the electric field is directed downward, point B is at a lower potential than point A When a positive test charge moves from A to B, the charge-field system loses potential energy through doing work to this charge Where does this energy go? PLAY ACTIVE FIGURE 2502 It turns into the kinetic energy of the object (with a mass) that carries the charge q 0.

Equipotentials = equal potentials Points B and C are at a lower potential than point A Points B and C are at the same potential All points in a plane perpendicular to a uniform electric field are at the same electric potential The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential

Charged Particle in a Uniform Field, Example Question: a positive charge (mass m) is released from rest and moves in the direction of the electric field. Find its speed at point B. Solution: The system loses potential energy: -ΔU=U A -U B =qEd The force and acceleration are in the direction of the field Use energy conservation to find its speed:

Potential and Point Charges A positive point charge produces a field directed radially outward The potential difference between points A and B will be

Potential and Point Charges, cont. The electric potential is independent of the path between points A and B It is customary to choose a reference potential of V = 0 at r A = ∞ Then the potential at some point r is

Electric Potential of a Point Charge The electric potential in the plane around a single point charge is shown The red line shows the 1/r nature of the potential

Electric Potential with Multiple Charges The electric potential due to several point charges is the sum of the potentials due to each individual charge This is another example of the superposition principle The sum is the algebraic sum V = 0 at r = ∞

Immediate application: Electric Potential of a Dipole The graph shows the potential (y-axis) of an electric dipole The steep slope between the charges represents the strong electric field in this region Work on the board to prove it.

Potential Energy of Multiple Charges Consider two charged particles The potential energy of the system is Use the active figure to move the charge and see the effect on the potential energy of the system PLAY ACTIVE FIGURE 2509

More About U of Multiple Charges If the two charges are the same sign, U is positive and external work (not the one from the field force) must be done to bring the charges together If the two charges have opposite signs, U is negative and external work is done to keep the charges apart

U with Multiple Charges, take 3 as an example If there are more than two charges, then find U for each pair of charges and add them For three charges: The result is independent of the order of the charges

Finding E From V This is straight forward FromWe have If E is one dimensional (say along the x-axis) If E is only a function of r (the point charge case):

Find V for an Infinite Sheet of Charge We know the a constant From We have The equipotential lines are the dashed blue lines The electric field lines are the brown lines The equipotential lines are everywhere perpendicular to the field lines d

E and V for a Point Charge The equipotential lines are the dashed blue lines The electric field lines are the brown lines The equipotential lines are everywhere perpendicular to the field lines

E and V for a Dipole The equipotential lines are the dashed blue lines The electric field lines are the brown lines The equipotential lines are everywhere perpendicular to the field lines

When you use a computer (program) to calculate electric Potential for a Continuous Charge Distribution: Consider a small charge element dq Treat it as a point charge The potential at some point due to this charge element is

V for a Continuous Charge Distribution, cont. To find the total potential, you need to integrate to include the contributions from all the elements This value for V uses the reference of V = 0 when P is infinitely far away from the charge distributions

V for a Uniformly Charged Ring P is located on the perpendicular central axis of the uniformly charged ring The ring has a radius a and a total charge Q

V for a Uniformly Charged Disk The ring has a radius R and surface charge density of σ P is along the perpendicular central axis of the disk

V for a Finite Line of Charge A rod of line ℓ has a total charge of Q and a linear charge density of λ

Prove that V is everywhere the same on a charged conductor in equilibrium Inside the conductor, because is 0,, so ΔV=0 On the surface, consider two points on the surface of the charged conductor as shown is always perpendicular to the displacement Therefore, Therefore, the potential difference between A and B is also zero

Summarize on potential V of a charged conductor in equilibrium V is constant everywhere on the surface of a charged conductor in equilibrium ΔV = 0 between any two points on the surface The surface of any charged conductor in electrostatic equilibrium is an equipotential surface Because the electric field is zero inside the conductor, we conclude that the electric potential is constant everywhere inside the conductor and equal to the value at the surface

E Compared to V The electric potential is a function of r The electric field is a function of r 2 The effect of a charge on the space surrounding it: The charge sets up a vector electric field which is related to the force The charge sets up a scalar potential which is related to the energy

Cavity in a Conductor Assume an irregularly shaped cavity is inside a conductor No charges are inside the cavity The electric field inside the conductor must be zero (can you prove that?)

Cavity in a Conductor, cont The electric field inside does not depend on the charge distribution on the outside surface of the conductor For all paths between A and B, A cavity surrounded by conducting walls is a field- free region as long as no charges are inside the cavity

Millikan Oil-Drop Experiment – Experimental Set-Up PLAY ACTIVE FIGURE

Millikan Oil-Drop Experiment Robert Millikan measured e, the magnitude of the elementary charge on the electron He also demonstrated the quantized nature of this charge Oil droplets pass through a small hole and are illuminated by a light

Oil-Drop Experiment, 2 With no electric field between the plates, the gravitational force and the drag force (viscous) act on the electron The drop reaches terminal velocity with

Oil-Drop Experiment, 3 When an electric field is set up between the plates The upper plate has a higher potential The drop reaches a new terminal velocity when the electrical force equals the sum of the drag force and gravity

Oil-Drop Experiment, final The drop can be raised and allowed to fall numerous times by turning the electric field on and off After many experiments, Millikan determined: q = ne where n = 0, -1, -2, -3, … e = 1.60 x C This yields conclusive evidence that charge is quantized Use the active figure to conduct a version of the experiment

Van de Graaff Generator Charge is delivered continuously to a high-potential electrode by means of a moving belt of insulating material The high-voltage electrode is a hollow metal dome mounted on an insulated column Large potentials can be developed by repeated trips of the belt Protons accelerated through such large potentials receive enough energy to initiate nuclear reactions

Electrostatic Precipitator An application of electrical discharge in gases is the electrostatic precipitator It removes particulate matter from combustible gases The air to be cleaned enters the duct and moves near the wire As the electrons and negative ions created by the discharge are accelerated toward the outer wall by the electric field, the dirt particles become charged Most of the dirt particles are negatively charged and are drawn to the walls by the electric field