CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, 17-19 January 2005.

Slides:



Advertisements
Similar presentations
The CBM experiment - exploring the QCD phase diagram at high net baryon densities - Claudia Höhne, GSI Darmstadt CBM collaboration The CBM experiment physics.
Advertisements

The Compressed Baryonic Matter (CBM) experiment at FAIR
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt XXXVI. Treffen "Kernphysik", Schleching/Obb., February 2005 Vortrag zum Thema: Hochleistungsdatenverarbeitung.
The Physics of Dense Nuclear Matter
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Detector requirements  Feasibility studies  Detector R&D  Outlook Peter.
Silicon Tracker for CBM Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Hadron Physics (I3HP) activities Hadron Physics (I3HP) is part of Integrated Activity of 6’th European Framework. Contract has a form of consortium of.
CBM DAQ and Event Selection Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Johann M. Heuser, GSI Darmstadt, Germany for the CBM Collaboration
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
Development of a RICH detector for electron identification in CBM Claudia Höhne, GSI Darmstadt CBM collaboration Sixth Workshop on Ring Imaging Cherenkov.
Compressed baryonic matter - Experiments at GSI and at FAIR Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Strange particles and neutron stars - experiments at GSI Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Outline:  A future accelerator for intense beams of.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept.
Peter Senger Kolkata Feb. 05 Outline:  Facility of Antiproton and Ion Research  Physics motivation for CBM  Feasibility studies  Experiment layout.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany for the CBM Collaboration.
Peter Senger The Compressed Baryonic Matter Experiment at FAIR Critical Point and the Onset of Deconfinement, Florence, July Outline:  The Facility.
The CBM experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment feasibility studies dileptons:
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt for the CBM collaboration 5 th International Conference on Physics and Astrophysics of Quark Gluon Plasma,
Fast reconstruction of tracks in the inner tracker of the CBM experiment Ivan Kisel (for the CBM Collaboration) Kirchhoff Institute of Physics University.
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Feasibility studies and Detector R&D  Outlook Peter Senger Seoul, April 21,
Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Measurements of dileptons with the CBM-Experiment at FAIR Claudia Höhne, University Giessen CBM collaboration.
Di-lepton spectroscopy in CBM Claudia Höhne, GSI Darmstadt CBM collaboration.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
Status of Reconstruction in CBM
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for.
Tracking in the CBM experiment I. Kisel Kirchhoff Institute of Physics, University of Heidelberg (for the CBM Collaboration) TIME05, Zurich, Switzerland.
1 THE MUON DETECTION SYSTEM FOR THE CBM EXPERIMENT AT FAIR/GSI A. Kiseleva Helmholtz International Summer School Dense Matter In Heavy Ion Collisions and.
1 JINR Contribution to the CBM experiment Report at the 5 th Workshop on the Scientific Cooperation Between German Research Centers and JINR, Dubna, January.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
Schwerionen- und Hadronenphysik an und Claudia Höhne, GSI Darmstadt KHuK Jahrestagung, 25./ , GSI Darmstadt Einleitung GSIFOPI & HADES FAIRHADES.
Di-muon measurements in CBM experiment at FAIR Arun Prakash 1 Partha Pratim Bhadhuri 2 Subhasis Chattopadhyay 2 Bhartendu Kumar Singh 1 (On behalf of CBM.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  FAIR: future center for nuclear and.
Peter Senger (GSI) The Compressed Baryonic Matter (CBM) experiment at FAIR FAIR Meeting Kiev, March Outline:  Scientific mission  Experimental.
Results from first beam tests for the development of a RICH detector for CBM J. Eschke 1*, C. Höhne 1 for the CBM collaboration 1 GSI, Darmstadt, Germany.
CBM The future of relativistiv heavy-ion physics at GSI V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany Tracing the.
CBM Relativistiv heavy-ion physics at FAIR V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany The QCD phase diagram : From.
The Compressed Baryonic Matter experiment at the future accelerator facility in Darmstadt Claudia Höhne GSI Darmstadt, Germany.
Ring Recognition and Electron Identification in the RICH detector of the CBM Experiment at FAIR Semeon Lebedev GSI, Darmstadt, Germany and LIT JINR, Dubna,
Physics investigations with CBM – and the importance of tracking – Claudia Höhne, Universität Gießen.
– Self-Triggered Front- End Electronics and Challenges for Data Acquisition and Event Selection CBM  Study of Super-Dense Baryonic Matter with.
Physics with CBM Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables.
CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...
1 Physics of High Baryon Densities - The CBM experiment at FAIR Subhasis Chattopadhyay Variable Energy Cyclotron Centre, Kolkata for the CBM collaboration.
The Compressed Baryonic Matter Experiment at FAIR Outline:  The Facility for Antiproton and Ion Research (FAIR)  Compressed Baryonic Matter: the physics.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
Possible structures of a neutron star Exploring dense nuclear matter The Compressed Baryonic Matter Experiment atom: m nucleus:
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline:  Probing dense baryonic matter  Experimental observables.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  Physics: Exploring the QCD phasediagram.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
CBM and FRRC Mikhail Ryzhinskiy, SPbSPU (on behalf of Russian CBM branch) 1 st FRRC International Seminar.
Physics analysis with KFParticle Iouri Vassiliev CBM Collaboration.
TOF ECAL TRD Iouri Vassiliev , I. Kisel and M. Zyzak
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Multi-Strange Hyperons Triggering at SIS 100
The Status of the CBM Experiment
CBM Relativistiv heavy-ion physics at FAIR
A heavy-ion experiment at the future facility at GSI
I. Vassiliev, V. Akishina, I.Kisel and
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, January 2005

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 2 Outline Physics  physics case  observables Experiment  requirements  challenges

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 3 States of strongly interacting matter Compression + heating = quark-gluon plasma (pion production) baryons hadrons partons Neutron starsEarly universe

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 4 Phase diagram of strongly interacting matter Freeze-out points calculated from measured particle ratios using the statistical model baryon density:  B  4 ( mT/2  h 2 c 2 ) 3/2 x [exp((  B -m)/T) - exp((-  B -m)/T)] baryons - antibaryons Lattice QCD calculations: Fedor & Katz, Ejiri et al. dilute:  B  0.04 fm -3  0.24  0 dense:  B  1.0 fm -3  6.2  0

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 5 Probing matter at high densities Trajectories calculated by a 3-fluid hydrodynamics model Toneev & Ivanov 30 AGeV trajectory close to critical endpoint

17-19 January 20055th BMBF-JINR Workshop, Walter F.J. Müller, GSI 6 SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Compressed Baryonic Matter The future Facility for Antiproton an Ion Research (FAIR)

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 7 Phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density GSI SIS300: moderate temperature, high baryon density

17-19 January 20055th BMBF-JINR Workshop, Walter F.J. Müller, GSI 8 States of strongly interacting matter “Strangeness" of dense matter ? In-medium properties of hadrons ? Compressibility of nuclear matter? Deconfinement at high baryon densities ?

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 9 CBM Physics Topics and Observables In-medium modifications of hadrons  onset of chiral symmetry restoration at high ρ B  measure: , ,   e+e- open charm (D mesons) Strangeness in matter  enhanced strangeness production  measure: K, , , ,  Indications for deconfinement at high ρ B  anomalous charmonium suppression ?  measure: J/ , D Critical point  event-by-event fluctuations Color superconductivity  precursor effects ?

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 10 Low-mass dileptons: AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 11 Meson production in central Au+Au SIS18 SIS100/ 300 W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 12 Open Charm detection D meson production in pN collisions Some hadronic decay modes D  (c  = 317  m): D +  K 0  + (2.9  0.26%) D +  K -  +  + (9  0.6%) D 0 (c  =  m): D 0  K -  + (3.9  0.09%) D 0  K -  +  +  - (7.6  0.4%) Measure displaced vertex with resolution of  30 μm !

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 13 CBM Setup  Radiation hard Silicon pixel/strip detectors in a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 10 5  Hadron identification: RPC, RICH  Measurement of photons, π 0, η, and muons: ECAL

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 14 CBM Technical Status Report

CBM Collaboration : 42 institutions, 14 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna LTP, JINR Dubna MEPhi, Moskau Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 16 CBM & Дубна From first page of CBM Collaboration List 4 Labs 38 Persons

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 17 Experimental Challenges  10 7 Au+Au reactions/sec (beam intensities up to 10 9 ions/sec, 1 % target)  determination of (displaced) vertices with high resolution (  30  m)  identification of electrons and hadrons Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 360    0 41 K + 13 K -

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 18 Pion misidentification a)0%b)0.01% c)0.1%d)1%

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 19 Experimental Conditions Hit rates for 10 7 minimum bias Au+Au collisions at 25 AGeV: Rates of > 10 kHz/cm 2 in large part of detectors !  main thrust of our detector design studies

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 20 CBM DAQ Requirements Profile D and J/Ψ signal drives the rate capability requirements D signal drives FEE and DAQ/Trigger requirements  Problem similar to B detection, see BTeV, LHCb  Adopted approach: displaced vertex 'trigger' in first level, like in BTeV  Additional Problem: DC beam→ interactions at random times → time stamps with ns precision needed → explicit event association needed Current design for FEE and DAQ/Trigger:  Self-triggered FEE: All hits shipped with time stamp  Data-push architecture: L1 trigger throughput limited but not latency limited Quite different from the usual LHC style electronics Substantial R&D needed

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 21 Conventional FEE-DAQ-Trigger Layout Detector Cave Shack FEE Buffer L2 Trigger L1 Trigger DAQ L1 Accept L0 Trigger f bunch Archive Trigger Primitives Especially instrumented detectors Dedicated connections Specialized trigger hardware Limited capacity Limited L1 trigger latency Modest bandwidth Standard hardware

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 22 L1 Select FPGA and CPU mix High bandwidth The way out: use Data Push Architecture Detector Cave Shack FEE DAQ f clock L2 Select Self-triggered front-end Autonomous hit detection No dedicated trigger connectivity All detectors can contribute to L1 Large buffer depth available System is throughput-limited and not latency-limited Modular design: Few multi-purpose rather many special-purpose modules

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 23 Toward Multi-Purpose FEE Chain PreAmp pre Filter ADC Hit Finder Hit Finder digital Filter digital Filter Backend & Driver Backend & Driver Si Strip Pad GEM's PMT APD's Anti- Aliasing Filter Sample rate: MHz Dyn. range: 8...>12 bit 'Shaping' 1/t Tail cancellation Baseline restorer Hit parameter estimators: Amplitude Time Clustering Buffering Link protocol All potentially in one mixed-signal chip

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 24 CBM DAQ and Online Event Selection Data flow: ~ 1 TB/sec 1 st level selection: ~ 1 Pops Data flow: ~ 1 GB/sec

17-19 January 20055th BMBF-JINR Workshop, Walter F.J. Müller, GSI 25 CBM R&D working packages Feasibility studies Simulations D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague ,ω,   e + e - Univ. Krakow JINR-LHE Dubna J/ψ  e + e - INR Moscow GSI π, K, p ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow Framework GSI Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna JINR-LIT Dubna Design & construction of detectors Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Silicon Strip Moscow State Univ CKBM St. Petersburg KRI St. Petersburg Univ. Obninsk RPC-TOF LIP Coimbra, Univ. Santiago Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow RBI Zagreb Univ. Marburg MWPC TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster NIPNE Bucharest Straw TRD JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RICH IHEP Protvino GSI Darmstadt KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Warsaw Univ. Magnet JINR-LHE, Dubna GSI Darmstadt FEE, DAQ, Online Event Selection, Computing J/ψ  μ + μ - PNPi St. Petersburg SPU St. Petersburg Λ, Ξ,Ω PNPi St. Petersburg SPU St. Petersburg Ring finder JINR-LIT, Dubna Theory: JINR-LTP, Dubna

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 26 CBM – Event Reconstruction & Analysis Track finding Hough transform Cellular automaton Conformal mapping 3D track following Track fitting Kalman filter Kalman filter (projections) Parabolic approximation Polynomial approximation Orthogonal polynomial set Primary vertex fitting Minimization of impact parameters Geometrical Kalman filter Secondary vertex fitting Geometrical Kalman filter Mass and topological constrained fit RICH ring finding Track extrapolation Hough transform Elastic net Robust fitter LHE LIT LHE LIT LHE LIT Analysis Λ-Analysis low-mass dileptons LHE

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 27 CBM – Magnet Design (LHE)

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 28 CBM – Fast Detectors (LHE) Joint test beam at GSI in July '04 2 chambers from Dubna

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 29 CBM – Straw based TRD (LPP)

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 30 Observables: Penetrating probes: , , , J /  (vector mesons) Strangeness: K, , , , , Open charm: D o, D  Hadrons ( p, π), exotica Experimental program of CBM: Systematic investigations: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV Beam energies up to 8 AGeV: HADES Large integrated luminosity: High beam intensity and duty cycle, Available for several month per year Detector requirements Large geometrical acceptance good hadron and electron identification excellent vertex resolution high rate capability of detectors, FEE and DAQ   e+e- ?

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 31 Stay tuned for Part II by Prof. A. Malakhov

17-19 January th BMBF-JINR Workshop, Walter F.J. Müller, GSI 32