Sec 5.1 / 5.2. One Gene – One Polypeptide Hypothesis early 20 th century – Archibald Garrod physician that noticed that some metabolic errors were found.

Slides:



Advertisements
Similar presentations
Translation By Josh Morris.
Advertisements

Mutations. DNA mRNA Transcription Introduction of Molecular Biology Cell Polypeptide (protein) Translation Ribosome.
Transcription & Translation Worksheet
Transcription and Translation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Transcription and Translation
Proteins are made by decoding the Information in DNA Proteins are not built directly from DNA.
FEATURES OF GENETIC CODE AND NON SENSE CODONS
Chapter 17: From Gene to Protein.
How Proteins are Produced
Overview: The Flow of Genetic Information
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 3 Cells: The Living.
GENE EXPRESSION. Gene Expression Our phenotype is the result of the expression of proteins Different alleles encode for slightly different proteins Protein.
Gene Expression: From Gene to Protein
Gene to Protein Gene Expression.
RNA Structure Like DNA, RNA is a nucleic acid. RNA is a nucleic acid made up of repeating nucleotides.
Figure 14.1 Figure 14.1 How does a single faulty gene result in the dramatic appearance of an albino deer? 1.
7. Protein Synthesis and the Genetic Code a). Overview of translation i). Requirements for protein synthesis ii). messenger RNA iii). Ribosomes and polysomes.
Chapter 11 DNA and Genes.
Cell Division and Gene Expression
Chapter 14 Genetic Code and Transcription. You Must Know The differences between replication (from chapter 13), transcription and translation and the.
Chapter 17 From Gene to Protein. Protein Synthesis  The information content of DNA  Is in the form of specific sequences of nucleotides along the DNA.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 17 From Gene to Protein.
©1998 Timothy G. Standish From DNA To RNA To Protein Timothy G. Standish, Ph. D.
Parts is parts…. AMINO ACID building block of proteins contain an amino or NH 2 group and a carboxyl (acid) or COOH group PEPTIDE BOND covalent bond link.
Today 14.2 & 14.4 Transcription and Translation /student_view0/chapter3/animation__p rotein_synthesis__quiz_3_.html.
G U A C G U A C C A U G G U A C A C U G UUU UUC UUA UCU UUG UCC UCA
Protein Synthesis Translation e.com/watch?v=_ Q2Ba2cFAew (central dogma song) e.com/watch?v=_ Q2Ba2cFAew.
Chapter 17 Membrane Structure and Function From Gene to Proteins.
Figure 17.4 DNA molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid ACC AAACCGAG T UGG U UU G GC UC.
How Genes Work: From DNA to RNA to Protein Chapter 17.
Gene Translation:RNA -> Protein How does a particular sequence of nucleotides specify a particular sequence of amino acids?nucleotidesamino acids The answer:
F. PROTEIN SYNTHESIS [or translating the message]
DNA.
From DNA to Protein.
Translation PROTEIN SYNTHESIS.
Whole process Step by step- from chromosomes to proteins.
Please turn in your homework
The blueprint of life; from DNA to Protein
Where is Cytochrome C? What is the role? Where does it come from?
Overview: The Flow of Genetic Information
Transcription and Translation
What is Transcription and who is involved?
From Gene to Phenotype- part 2
Ch. 17 From Gene to Protein Thought Questions
Gene Expression: From Gene to Protein
Gene Expression: From Gene to Protein
From Gene to Protein The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific.
Overview: The Flow of Genetic Information
Section Objectives Relate the concept of the gene to the sequence of nucleotides in DNA. Sequence the steps involved in protein synthesis.
Protein Synthesis Translation.
Overview: The Flow of Genetic Information
Chapter 17 From Gene to Protein.
Transcription You’re made of meat, which is made of protein.
Gene Expression: From Gene to Protein
Chapter 17 From Gene to Protein.
Protein Synthesis The information of DNA is in the form of specific sequences of nucleotides along the DNA strands The DNA inherited by an organism leads.
SC-100 Class 25 Molecular Genetics
Gene Expression: From Gene to Protein
Warm Up 3 2/5 Can DNA leave the nucleus?
Today’s notes from the student table Something to write with
Transcription and Translation
Overview: The Flow of Genetic Information
Central Dogma and the Genetic Code
Bellringer Please answer on your bellringer sheet:
DNA, RNA, Amino Acids, Proteins, and Genes!.
How does DNA control our characteristics?
Chapter 17: From Gene to Protein
12.2 Replication of DNA DNA replication is the process of copying a DNA molecule. Semiconservative replication - each strand of the original double helix.
Chapter 17: From Gene to Protein
Presentation transcript:

Sec 5.1 / 5.2

One Gene – One Polypeptide Hypothesis early 20 th century – Archibald Garrod physician that noticed that some metabolic errors were found in numerous members in a family alkaptonuria – metabolic disorder where tyrosine is not properly broken down hypothesized that these people had a defective enzyme that usually breaks down tyrosine. He also hypothesized that this enzyme was under the control of a single gene.

1941 – Beadle & Tatum first hypothesized that genes and enzymes are somehow related

Beadle & Tatum Expt Used X-rays to cause bread mold (N. Crassa) to mutate Wild type (Normal): can survive on minimal medium (agar, inorganic salts, glucose and biotin) can synthesize all other molecules they need from these simple molecules (e.g. amino acids and nutrients) Mutant: could not survive on minimal medium could not synthesize amino acids and nutrients they need because of deficit in specific enzymes

examining arginine synthesis precursorornithinecitrulline arginine E1E1 E2E2 E3E3

Beadle & Tatum Expt - 3

Beadle & Tatum Conclusions one mutation corresponded to a change in a single enzyme

As researchers learned more about proteins they made minor revisions to the “one gene-one- enzyme” hypothesis Not all proteins are enzymes (e.g. keratin – structural protein) Some proteins are made up of more than one type of polypeptide, each controlled by a different gene (e.g. Hemoglobin – α and β) More accurately: “one-gene-one-polypeptide”

Central Dogma – the cellular chain of command Transcription Animation

Central Dogma DNA mRNA protein COMPONENTSLOCATIONPROCESS nucleustranscription cytoplasmtranslation

Eukaryotes vs. Prokaryotes Figure 17.3b TRANSCRIPTION RNA PROCESSING TRANSLATION mRNA DNA Pre-mRNA Polypeptide Ribosome Nuclear envelope TRANSLATION TRANSCRIPTION DNA mRNA Ribosome Polypeptide

Transcription Figure 17.7 Promoter Transcription unit RNA polymerase Start point Rewound RNA transcript 3 3 Completed RNA transcript Unwound DNA RNA transcript Template strand of DNA DNA 1 Initiation. After RNA polymerase binds to the promoter, the DNA strands unwind, and the polymerase initiates RNA synthesis at the start point on the template strand. 2 Elongation. The polymerase moves downstream, unwinding the DNA and elongating the RNA transcript 5  3. In the wake of transcription, the DNA strands re-form a double helix. 3 Termination. Eventually, the RNA transcript is released, and the polymerase detaches from the DNA.

Figure 17.4 DNA molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid ACC AAACCGAG T UGG U UU G GC UC A Trp Phe Gly Ser Codon

A codon in messenger RNA Is either translated into an amino acid or serves as a translational stop signal Figure 17.5 Second mRNA base UCA G U C A G UUU UUC UUA UUG CUU CUC CUA CUG AUU AUC AUA AUG GUU GUC GUA GUG Met or start Phe Leu lle Val UCU UCC UCA UCG CCU CCC CCA CCG ACU ACC ACA ACG GCU GCC GCA GCG Ser Pro Thr Ala UAU UAC UGU UGC TyrCys CAU CAC CAA CAG CGU CGC CGA CGG AAU AAC AAA AAG AGU AGC AGA AGG GAU GAC GAA GAG GGU GGC GGA GGG UGG UAA UAG Stop UGA Stop Trp His Gln Asn Lys Asp Arg Ser Arg Gly U C A G U C A G U C A G U C A G First mRNA base (5 end) Third mRNA base (3 end) Glu

The following is the sequence of a bases on the template strand of DNA in the transcription unit 3’ – GGATCAGGTCCAGGCAATTTAGCATGCCCC – 5’ a) Transcribe this sequence into mRNA 5’ – CCUAGUCCAGGUCCGUUAAAUCGUACGGGG – 3’ b) List the order of amino acids Pro - Ser – Pro – Gly – Pro – Leu – Asn – Arg – Thr - Gly

Classwork Section 5.1 (pg. 236) #1-2,4-6 Section 5.2 (pg. 241) #1-3,5-13