Bias correction in data assimilation

Slides:



Advertisements
Similar presentations
Adaptive Estimation and Tuning of Satellite Observation Error in Assimilation Cycle with GRAPES Hua ZHANG, Dehui CHEN, Xueshun SHEN, Jishan XUE, Wei HAN.
Advertisements

Slide 1 The 4th THORPEX-Asia Science Workshop and 9th ARC Meeting FY-3 satellite data tuning and assimilation Qifeng Lu National Satellite Meteorological.
1 The GEMS production systems and retrospective reanalysis Adrian Simmons.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Slide 1 ECMWF Training Course - The Global Observing System - 06/2013 The Satellite Global Observing System Stephen English 1.A brief introduction to the.
Numerical Weather Prediction (Met DA) The Analysis of Satellite Data lecture 2 Tony McNally ECMWF.
Monitoring Stratospheric Temperature and Trends with Satellite Data March 3, 2005 R. Lin, A. J. Miller, C. Long, J. Wild, M. E. Gelman, S. Zhou, R. M.
Imposed ozone calculations Qualitatively same behaviour in all models (which qualitiatively agrees with the observations). Significant quantitative differences.
Stratospheric Measurements: Microwave Sounders I. Current Methods – MSU4/AMSU9 Diurnal Adjustment Merging II. Problems and Limitations III. Other AMSU.
Enza Di Tomaso* and Niels Bormann ECMWF *EUMETSAT fellow
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
© The Aerospace Corporation 2014 Observation Impact on WRF Model Forecast Accuracy over Southwest Asia Michael D. McAtee Environmental Satellite Systems.
Data Assimilation Andrew Collard. Overview Introduction to Atmospheric Data Assimilation Control Variables Observations Background Error Covariance Summary.
Slide 1 IPWG, Beijing, October 2008 Slide 1 Assimilation of rain and cloud-affected microwave radiances at ECMWF Alan Geer, Peter Bauer, Philippe.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Xin Kong, Lizzie Noyes, Gary Corlett, John Remedios, Simon Good and David Llewellyn-Jones Earth Observation Science, Space Research Centre, University.
GlobVapour Frascati, ItalyMarch 8-10, NOAA’s National Climatic Data Center HIRS Upper Tropospheric Humidity and Humidity Profiles Lei Shi NOAA National.
Numerical Weather Prediction Division The usage of the ATOVS data in the Korea Meteorological Administration (KMA) Sang-Won Joo Korea Meteorological Administration.
ECMWF – 1© European Centre for Medium-Range Weather Forecasts Developments in the use of AMSU-A, ATMS and HIRS data at ECMWF Heather Lawrence, first-year.
Data assimilation of polar orbiting satellites at ECMWF
Recent activities on utilization of microwave imager data in the JMA NWP system - Preparation for AMSR2 data assimilation - Masahiro Kazumori Japan Meteorological.
Operational Global Model Plans John Derber. Timeline July 25, 2013: Completion of phase 1 WCOSS transition August 20, 2013: GDAS/GFS model/analysis upgrade.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Long-Term Upper Air Temperature.
Diagnosing Climate Change from Satellite Sounding Measurements – From Filter Radiometers to Spectrometers William L. Smith Sr 1,2., Elisabeth Weisz 1,
1 Detection and Determination of Channel Frequency Shift in AMSU-A Observations Cheng-Zhi Zou and Wenhui Wang IGARSS 2011, Vancouver, Canada, July 24-28,
Slide 1 Sakari Uppala and Dick Dee European Centre for Medium-Range Weather Forecasts ECMWF reanalysis: present and future.
ECMWF NAEDEX 2012 – ECMWF Status Report – Stephen Engilsh ECMWF Status Report Stephen English ECMWF.
Lessons on Satellite Meteorology Part VII: Metop Introduction to Metop Instruments The sounders with focus on IASI The GRAS instrument The ASCAT scatterometer.
Satellite Bias Correction for CFSRR Haixia Liu, Russ Treadon, Robert Kistler, John Derber, Suru Saha and Hua-lu Pan Nov. 7, 2007 with input from Jack Woollen,
Reanalysis: When observations meet models
Land Surface Analysis SAF: Contributions to NWP Isabel F. Trigo.
1 JRA-55 the Japanese 55-year reanalysis project - status and plan - Climate Prediction Division Japan Meteorological Agency.
1 Hyperspectral Infrared Water Vapor Radiance Assimilation James Jung Cooperative Institute for Meteorological Satellite Studies Lars Peter Riishojgaard.
USE OF AIRS/AMSU DATA FOR WEATHER AND CLIMATE RESEARCH Joel Susskind University of Maryland May 12, 2005.
Hyperspectral Infrared Alone Cloudy Sounding Algorithm Development Objective and Summary To prepare for the synergistic use of data from the high-temporal.
Workshop for Soundings from High Spectral Resolution Observations Use of Advanced Infrared Sounder Data in NWP models Roger Saunders (Met Office, U.K.)
Jinlong Li 1, Jun Li 1, Christopher C. Schmidt 1, Timothy J. Schmit 2, and W. Paul Menzel 2 1 Cooperative Institute for Meteorological Satellite Studies.
AIRS, HIRS and CSBT Experiments Plus Other FY05/06 Results by James A. Jung Tom H. Zapotocny and John Le Marshall Cooperative Institute for Meteorological.
Investigations of Artifacts in the ISCCP Datasets William B. Rossow July 2006.
Hou/JTST NASA GEOS-3/TRMM Re-Analysis: Capturing Observed Rainfall Variability in Global Analysis Arthur Hou NASA Goddard Space Flight Center 2.
RADIOSONDE TEMPERATURE BIAS ESTIMATION USING A VARIATIONAL APPROACH Marco Milan Vienna 19/04/2012.
1 Bias correction in data assimilation Dick Dee ECMWF Meteorological Training Course Data Assimilation and Use of Satellite Data 11 May 2011.
ECMWF reanalysis using GPS RO data Sean Healy Shinya Kobayashi, Saki Uppala, Mark Ringer and Mike Rennie.
Infrared Sounding Data in the GMAO Data Assimilation System JCSDA Infrared Sounding Working Group (ISWG) 30 January 2009.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
The assimilation of satellite radiances in LM F. Di Giuseppe, B. Krzeminski,R. Hess, C. Shraff (1) ARPA-SIM Italy (2) IMGW,Poland (3)DWD, Germany.
© Crown copyright Met Office Assimilating infra-red sounder data over land John Eyre for Ed Pavelin Met Office, UK Acknowledgements: Brett Candy DAOS-WG,
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
Indirect impact of ozone assimilation using Gridpoint Statistical Interpolation (GSI) data assimilation system for regional applications Kathryn Newman1,2,
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
What is atmospheric radiative transfer?
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Bias correction in data assimilation
Tony Reale ATOVS Sounding Products (ITSVC-12)
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Data Assimilation Training
Bias correction in data assimilation
Weak constraint 4D-Var at ECMWF
Cristina Lupu, Niels Bormann, Reima Eresmaa
Stéphane Laroche Judy St-James Iriola Mati Réal Sarrazin
The ECMWF weak constraint 4D-Var formulation
Use of ATOVS at DAO Joanna Joiner, Donald Frank, Arlindo da Silva,
Initialization of Numerical Forecast Models with Satellite data
Update on Stratosphere Improvements in Reanalysis
Infrared Satellite Data Assimilation at NCAR
Impact of Assimilating AMSU-A Radiances on forecasts of 2008 Atlantic TCs Initialized with a limited-area EnKF Zhiquan Liu, Craig Schwartz, Chris Snyder,
Dorothee Coppens.
New DA techniques and applications for stratospheric data sets
Atmospheric reanalysis at ECMWF
Presentation transcript:

Bias correction in data assimilation Dick Dee and Niels Bormann ECMWF Meteorological Training Course Data Assimilation and Use of Satellite Data 27 April 2009

Outline Introduction Biases in models, observations, and observation operators Implications for data assimilation Variational analysis and correction of observation bias The need for an adaptive system Variational bias correction (VarBC) Limitations of VarBC Interaction with model bias Assimilation in the upper stratosphere Summary

Model bias: Systematic D+3 Z500 errors in three different models ECMWF Meteo-France DWD The above figure shows systematic Z500 errors at D+3 for three different models (ECMWF, Meteo-France and German Weather Service). The first point to notice is that at D+3 the different models show similar systematic errors. While this is perhaps not too surprisingly for the ECMWF and Meteo-France model (some of the model development is shared), the similarity between the ECMWF and the DWD model is astonishing. Summarizing, the above results show that different models have similar systematic error characteristics. Different models often have similar error characteristics See Thomas Jung’s TC lecture for much more detail “Predictability, Diagnostics and Seasonal Forecasting" module

Model bias: Seasonal variation in upper-stratospheric model errors T255L60 model currently used for ERA-Interim Summer: Radiation, ozone? 0.1hPa (65km) Winter: Gravity-wave drag? 40hPa (22km)

Observation bias: Radiosonde temperature observations Daytime warm bias due to radiative heating of the temperature sensor (depends on solar elevation and equipment type) Mean temperature anomalies for different solar elevations observed – ERA-40 background at Saigon (200 hPa, 0 UTC) Bias changes due to change of equipment

Observation and observation operator bias: Satellite radiances Monitoring the background departures (averaged in time and/or space): Constant bias (HIRS channel 5) Diurnal bias variation in a geostationary satellite Obs-FG bias [K] nadir high zenith angle Bias depending on scan position (AMSU-A ch 7) Air-mass dependent bias (AMSU-A channel 14) Obs-FG bias [K]

Observation and observation operator bias: Satellite radiances Monitoring the background departures (averaged in time and/or space): HIRS channel 5 (peaking around 600hPa) on NOAA-14 satellite has +2.0K radiance bias against FG. Obs-FG bias [K] Same channel on NOAA-16 satellite has no radiance bias against FG. Obs-FG bias [K] NOAA-14 channel 5 has an instrument bias.

Observation and observation operator bias: Satellite radiances Different bias for HIRS due to different spectroscopy in the radiative transfer model: Obs-FG bias [K] Other common causes for biases in radiative transfer: Bias in assumed concentrations of atmospheric gases (e.g., CO2) Neglected effects (e.g., clouds) Incorrect spectral response function …. Channel number Old spectroscopy New spectroscopy METEOSAT-9, 13.4µm channel: Drift in bias due to ice-build up on sensor: Sensor decontamination Obs –FG Bias

Implications for data assimilation: Bias problems in a nutshell Observations and observation operators have biases, which may change over time Daytime warm bias in radiosonde measurements of stratospheric temperature; radiosonde equipment changes Biases in cloud-drift wind data due to problems in height assignment Biases in satellite radiance measurements and radiative transfer models Models have biases, and changes in observational coverage over time may change the extent to which observations correct these biases Stratospheric temperature bias modulated by radiance assimilation This is especially important for reanalysis (trend analysis) Data assimilation methods are primarily designed to correct small (random) errors in the model background Large corrections generally introduce spurious signals in the assimilation Likewise, inconsistencies among different parts of the observing system lead to all kinds of problems

Most assimilation systems assume unbiased models and unbiased data Implications for data assimilation: The effect of model bias on trend estimates Most assimilation systems assume unbiased models and unbiased data Biases in models and/or data can induce spurious trends in the assimilation

Surface air temperature anomaly (oC) with respect to 1987-2001 Implications for data assimilation: ERA-40 surface temperatures compared to land-station values Surface air temperature anomaly (oC) with respect to 1987-2001 Based on ERA-40 model simulation (with SST/sea-ice data) Based on monthly CRUTEM2v data (Jones and Moberg, 2003) Based on ERA-40 reanalysis Northern hemisphere

Outline Introduction Biases in models, observations, and observation operators Implications for data assimilation Variational analysis and correction of observation bias The need for an adaptive system Variational bias correction (VarBC) Limitations of VarBC Interaction with model bias Assimilation in the upper stratosphere Summary

Variational analysis and bias correction: A brief review of variational data assimilation Minimise background constraint (Jb) observational constraint (Jo) The input xb represents past information propagated by the forecast model (the model background) The input [y – h(xb)] represents the new information entering the system (the background departures - sometimes called the innovation) The function h(x) represents a model for simulating observations (the observation operator) Minimising the cost function J(x) produces an adjustment to the model background based on all used observations (the analysis)

Variational analysis and bias correction: Error sources in the input data Minimise background constraint (Jb) observational constraint (Jo) Errors in the input [y – h(xb)] arise from: errors in the actual observations errors in the model background errors in the observation operator There is no general method for separating these different error sources we only have data about differences there is no true reference in the real world The analysis does not respond well to contradictory input information A lot of work is done to remove biases prior to assimilation: ideally by removing the cause in practise by careful comparison against other data

The need for an adequate bias model Prerequisite for any bias correction is a good model for the bias (b(x,β)): Ideally, “corrects only what we want to correct”. If possible, bias model is guided by the physical origins of the bias. Usually, bias models are derived empirically from observation monitoring. Constant bias (HIRS channel 5) Diurnal bias variation in a geostationary satellite Obs-FG bias [K] Air-mass dependent bias (AMSU-A ch 10) nadir high zenith angle Bias depending on scan position (AMSU-A ch 7) 1.7 1.0 Obs-FG bias [K] 0.0 -1.0

Past* scheme for radiance bias correction at ECMWF Scan bias and air-mass dependent bias for each sensor/channel were estimated off-line from background departures, and stored on files (Harris and Kelly 2001) Error model for brightness temperature data: where Periodically estimate scan bias and predictor coefficients: typically 2 weeks of background departures 2-step regression procedure careful masking and data selection Average the background departures: Predictors, for instance: 1000-300 hPa thickness 200-50 hPa thickness surface skin temperature total precipitable water *Replaced in operations September 2006 by VarBC (Variational Bias Correction)

The need for an adaptive bias correction system The observing system is increasingly complex and constantly changing It is dominated by satellite radiance data: biases are flow-dependent, and may change with time they are different for different sensors they are different for different channels How can we manage the bias corrections for all these different components? This requires a consistent approach and a flexible, automated system

Variational bias correction: The general idea The bias in a given instrument/channel is described by (a few) bias parameters: typically, these are functions of air-mass and scan-position (the predictors) These parameters can be estimated in a variational analysis along with the model state (Derber and Wu, 1998 at NCEP, USA) The standard variational analysis minimizes Modify the observation operator to account for bias: Include the bias parameters in the control vector: Minimize instead What is needed to implement this: The modified operator and its TL + adjoint A cycling scheme for updating the bias parameter estimates An effective preconditioner for the joint minimization problem

Variational bias correction: The modified analysis problem The original problem: Jb: background constraint Jo: observation constraint Jb: background constraint for x J: background constraint for  Jo: bias-corrected observation constraint The modified problem: Parameter estimate from previous analysis

Performance: Adaptive bias correction of NOAA-17 HIRS Ch12 p(0): global constant p(1): 1000-300hPa thickness p(2): 200-50hPa thickness p(3): surface temperature p(4): total column water mean analysis departures mean bias correction

Performance: Spinning up new instruments – IASI on MetOp IASI is a high-resolution interferometer with 8461 channels Initially unstable – data gaps, preprocessing changes

Performance: NOAA-9 MSU channel 3 bias corrections (cosmic storm) 200 hPa temperature departures from radiosonde observations Variational bias correction smoothly handles the abrupt change in bias: initially QC rejects most data from this channel the variational analysis adjusts the bias estimates bias-corrected data are gradually allowed back in no shock to the system!

Performance: Fit to conventional data Introduction of VarBC in ECMWF operations

Outline Introduction Biases in models, observations, and observation operators Implications for data assimilation Variational analysis and correction of observation bias The need for an adaptive system Variational bias correction (VarBC) Limitations of VarBC Interaction with model bias Assimilation in the upper stratosphere Summary

Limitations of VarBC: Interaction with model bias VarBC introduces some extra degrees of freedom in the analysis, to help improve the fit to the (bias-corrected) observations: This works well where the analysis is well-constrained by observations, and “anchoring” observations are available (e.g., radiosondes, GPSRO data). VarBC will correct any biased observations and produce a consistent consensus analysis. model abundant observations This may lead to undesired effects where model bias is present, and few observations are available, or only observations with VarBC are present. VarBC will, over time, force agreement with the model background. model observations VarBC may wrongly attribute model bias to the observations

Limitation of VarBC: Interaction with model bias 0.1hPa SSU Ch3 weighting function The model is generally too cold (by as much as 20K in polar winter) This is wrongly interpreted as an SSU warm bias SSU is then “corrected” to agree with the model 40hPa Projection of model cold bias onto SSU Ch3 bias model

Weak-constraint 4D-Var (Y. Trémolet) Include model error in the control vector: Constraint is determined by Q: for example, stratosphere only

SSU Ch3 mean radiance departures – Aug 1993 ERA-Interim ERA-Interim + weak constraint

Summary Biases are everywhere: Many observations cannot be usefully assimilated without bias corrections Manual bias correction for satellite data is no longer feasible Bias parameters can be estimated and adjusted during the assimilation VarBC works well in situations where there is sufficient redundancy in the data; or there are no large model biases Some questions: How best to represent observation bias with a few parameters? Should VarBC be applied to non-radiance data as well? How much fixed (unbiased) information does the system need? How best to handle model bias in data assimilation?

Bias: It’s a fact of life…

Some references and additional information Harris, B. A. and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc., 127, 1453-1468 Derber, J. C. and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287-2299 Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Pp. 97-112 in Proceedings of the ECMWF workshop on assimilation of high spectral resolution sounders in NWP, 28 June-1 July 2004, Reading, UK Dee, D. P., 2005: Bias and data assimilation. Q. J. R. Meteorol. Soc., 131, 3323-3343 Feel free to contact me with questions: Niels.Borman@ecmwf.int