Parametrizations and data assimilation

Slides:



Advertisements
Similar presentations
© Crown copyright 2006Page 1 CFMIP II sensitivity experiments Mark Webb (Met Office Hadley Centre) Johannes Quaas (MPI) Tomoo Ogura (NIES) With thanks.
Advertisements

Rossana Dragani Using and evaluating PROMOTE services at ECMWF PROMOTE User Meeting Nice, 16 March 2009.
1 The GEMS production systems and retrospective reanalysis Adrian Simmons.
Reading, UK Parametrizations and data assimilation © ECMWF 2010 Marta JANISKOVÁ ECMWF Parametrizations and data assimilation.
Parameterizations in Data Assimilation
Parametrization of surface fluxes: Outline
Sensitivity Studies (1): Motivation Theoretical background. Sensitivity of the Lorenz model. Thomas Jung ECMWF, Reading, UK
Parametrization of PBL outer layer Martin Köhler Overview of models Bulk models local K-closure K-profile closure TKE closure.
Parameterization of orographic related momentum
Parametrization of PBL outer layer Irina Sandu and Martin Kohler
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course 1 to 4 July 2013.
Parametrizations in Data Assimilation ECMWF Training Course May 2012 Philippe Lopez Physical Aspects Section, Research Department, ECMWF (Room 113)
1 Numerical Weather Prediction Parameterization of diabatic processes Convection III The ECMWF convection scheme Christian Jakob and Peter Bechtold.
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Quantifying sub-grid cloud structure and representing it GCMs
Proposed new uses for the Ceilometer Network
Page 1 of 26 A PV control variable Ross Bannister* Mike Cullen *Data Assimilation Research Centre, Univ. Reading, UK Met Office, Exeter, UK.
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Radar/lidar observations of boundary layer clouds
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
Integrated Profiling at the AMF
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Enhancement of Satellite-based Precipitation Estimates using the Information from the Proposed Advanced Baseline Imager (ABI) Part II: Drizzle Detection.
COSMO General Meeting Zürich, Sept Stefan Klink, Klaus Stephan and Christoph Schraff and Daniel.
Assimilation Algorithms: Tangent Linear and Adjoint models Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
Hou/JTST Exploring new pathways in precipitation assimilation Arthur Hou and Sara Zhang NASA Goddard Space Flight Center Symposium on the 50 th.
Polly Smith, Alison Fowler, Amos Lawless School of Mathematical and Physical Sciences, University of Reading Exploring coupled data assimilation using.
Training course: boundary layer IV Parametrization above the surface layer (layout) Overview of models Slab (integral) models K-closure model K-profile.
A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
Data assimilation for validation of climate modeling systems Pierre Gauthier Department of Earth and Atmospheric Sciences Université du Québec à Montréal.
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Reading: Text, (p40-42, p49-60) Foken 2006 Key questions:
Slide 1 IPWG, Beijing, October 2008 Slide 1 Assimilation of rain and cloud-affected microwave radiances at ECMWF Alan Geer, Peter Bauer, Philippe.
Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model Polly Smith, Alison Fowler & Amos Lawless School of.
Numerical Weather Prediction Division The usage of the ATOVS data in the Korea Meteorological Administration (KMA) Sang-Won Joo Korea Meteorological Administration.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
USE OF PRECIPITATION INFORMATION FROM SPACEBORNE RADAR FOR VERIFICATION AND ASSIMILATION IN THE ECMWF MODEL A.Benedetti, P. Lopez, E. Moreau, P. Bauer,
The 2nd International Workshop on GPM Ground Validation TAIPEI, Taiwan, September 2005 GV for ECMWF's Data Assimilation Research Peter
Modern Era Retrospective-analysis for Research and Applications: Introduction to NASA’s Modern Era Retrospective-analysis for Research and Applications:
Data assimilation, short-term forecast, and forecasting error
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Evaluating forecasts of the evolution of the cloudy boundary layer using radar and lidar observations Andrew Barrett, Robin Hogan and Ewan O’Connor Submitted.
A Numerical Study of Early Summer Regional Climate and Weather. Zhang, D.-L., W.-Z. Zheng, and Y.-K. Xue, 2003: A Numerical Study of Early Summer Regional.
EWGLAM Oct Some recent developments in the ECMWF model Mariano Hortal ECMWF Thanks to: A. Beljars (physics), E. Holm (humidity analysis)
Page 1© Crown copyright 2004 SRNWP Lead Centre Report on Data Assimilation 2005 for EWGLAM/SRNWP Annual Meeting October 2005, Ljubljana, Slovenia.
Reading Parametrizations and data assimilation Marta JANISKOVÁ ECMWF
Preliminary results from assimilation of GPS radio occultation data in WRF using an ensemble filter H. Liu, J. Anderson, B. Kuo, C. Snyder, A. Caya IMAGe.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
Vincent N. Sakwa RSMC, Nairobi
Incrementing moisture fields with satellite observations
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Matthew Lagor Remote Sensing Stability Indices and Derived Product Imagery from the GOES Sounder
Mesoscale Assimilation of Rain-Affected Observations Clark Amerault National Research Council Postdoctoral Associate - Naval Research Laboratory, Monterey,
LOGNORMAL DATA ASSIMILATION: THEORY AND APPLICATIONS
Numerical Weather Forecast Model (governing equations)
Japan Meteorological Agency / Meteorological Research Institute
Parametrizations in Data Assimilation
Parametrizations in Data Assimilation
Parametrizations in Data Assimilation
Well known and less obvious applications of adjoint models:
Radiometer channel optimization for precipitation remote sensing
Application of Stochastic Techniques to the ARM Cloud-Radiation Parameterization Problem Dana Veron, Jaclyn Secora, Mike Foster, Christopher Weaver, and.
Parameterizations in Data Assimilation
Sarah Dance DARC/University of Reading
Presentation transcript:

Parametrizations and data assimilation Marta JANISKOVÁ ECMWF marta.janiskova@ecmwf.int

PARAMETRIZATIONS IN DATA ASSIMILATION Parametrization = description of physical processes in the model. Why is physics needed in data assimilation ? How the physics is applied in variational data assimilation system ? What are the problems to be solved before using physics in data assimilation ? Which parametrization schemes are used at ECMWF ? What is an impact of including the physical processes in assimilating model ? How the physics is used for assimilation of observations related to the physical processes ?

POSITION OF THE PROBLEM GOAL OF DATA ASSIMILATION production of an accurate representation of the atmospheric state to initialize numerical weather prediction models IMPORTANCE OF THE ASSIMILATING MODEL the better the assimilating model (4D-Var consistently using the information coming from the observations and the model) the better the analysis (and the subsequent forecast) the more sophisticated the model (4D-Var containing physical parametrizations) the more difficult the minimization (on-off processes, non-linearities) DEVELOPMENT OF A PHYSICAL PACKAGE FOR DATA ASSIMILATION = FINDING A TRADE-OFF BETWEEN: Simplicity and linearity Realism

IMPORTANCE OF INCLUDING PHYSICS IN THE ASSIMILATING MODEL MISSING PHYSICAL PROCESSES: can be critical especially in the tropics, planetary boundary layer, stratosphere can increase the so-called spin-up/spin-down problem INCLUDING PHYSICAL PROCESSES: provides an initial atmospheric state more consistent with physical processes creates a better agreement between the model and data a necessary step towards: initialization of prognostic variables related to physical processes the use of new (satellite) observations in data assimilation systems (rain, clouds, soil moisture, …) PARAMETRIZATIONS OF PHYSICAL PROCESSES: constantly being improved however, remain approximate representation of the true atmospheric behaviour

STANDARD FORMULATION OF 4D-VAR the goal of 4D-Var is to define the atmospheric state x(t0) such that the “distance” between the model trajectory and observations is minimum over a given time period [t0, tn] finding the model state at the initial time t0 which minimizes a cost-function J : H is the observation operator (model space  observation space) xi is the model state at time step ti such as: M is the nonlinear forecast model integrated between t0 and ti

WHY AND WHERE PHYSICAL PARAMETRIZATIONS NEEDED IN DATA ASSIMILATION? In 1D-Var, physical parametrizations can be needed in observation operator, H (no time evolution involved). Example: to assimilate reflectivity profiles, H must perform the conversion: Model state (T, q, u, v, Ps ) Cloud and precipitation profiles Simulated reflectivity profile moist physics reflectivity model In 4D-Var, physical parametrizations are involved in the observation operator, H, but also in the forecast model, M. Physical parametrizations are needed in data assimilation (DA): to link the model state to the observed quantities, to evolve the model state in time during the assimilation (trajectory, tangent-linear (TL) and adjoint (AD) computations in 4D-Var)

OPERATIONAL 4D-VAR AT ECMWF – INCREMENTAL FORMULATION In incremental 4D-Var, the cost function is minimized in terms of increments: with the model state defined at any time ti as:  tangent linear model Tangent-linear operators 4D-Var can be then approximated to the first order as minimizing: where is the innovation vector Gradient of the cost function to be minimized: Adjoint operators  computed with the non-linear model at high resolution using full physics  M  computed with the tangent-linear model at low resolution using simplified physics  M’  computed with a low resolution adjoint model using simplified physics  MT

WHY SIMPLIFIED PHYSICS? One of the main assumptions in variational DA is that parametrizations and operators that describe atmospheric processes should be linear.  otherwise, the use of the tangent-linear and adjoint approach is inappropriate and the analysis is suboptimal In practise, weak nonlinearities can be handled through successive trajectory updates (e.g., 3 outer loops in ECMWF 4D-Var) Physical parametrizations used in DA (TL and AD) are usually simplified versions of the original parametrizations employed in the forecast models: to avoid nonlinearities (see further), to keep the computational cost reasonable, but they also need to be realistic enough ! ECMWF TL and AD models are coded using a manual line-by-line approach. Automatic AD coding softwares exist (but far from perfect and non-optimized).

finite difference (FD) TL integration LINEARITY ISSUE Variational assimilation is based on the strong assumption that the analysis is performed in quasi-linear framework. However, in the case of physical processes, strong nonlinearities or thresholds can occur in the presence of discontinuous/non-differentiable processes (e.g. switches or thresholds in cloud water and precipitation formation, …) finite difference (FD) TL integration u-wind increments fc t+12, ~700 hPa x 105 Without adequate treatment of most serious threshold processes, the TL approximation can turn to be useless.

TL increments correspond well to finite differences IMPORTANCE OF THE REGULARIZATION OF TL MODEL regularizations help to remove the most important threshold processes in physical parametrizations which can effect the range of validity of the tangent linear approximation after solving the threshold problems TL increments correspond well to finite differences u-wind increments fc t+12, ~700 hPa finite difference (FD) TL integration

Potential source of problem (example of precipitation formation) dx dyTL dyNL

Possible solution, but … dyTL1 dyTL2 dyNL dx

… may just postpone the problem and influence the performance of NL scheme dx2 dyTL3 dyTL2 dyNL dx1

However, the better the model  the smaller the increments dyTL1 dyTL2 dyNL dx

SIMPLIFCATIONS AND REGULARIZATIONS OF “PERTURBATION” MODEL In NWP – a tendency to develop more and more sophisticated physical parametrizations they may contain more discontinuities For the “perturbation” model – more important to describe basic physical tendencies while avoiding the problem of discontinuities Level of simplifications and/or required complexity depends on: which level of improvement is expected (for different variables, vertical and horizontal resolution, …) which type of observations should be assimilated necessity to remove threshold processes Different ways of simplifications: development of simplified physics from simple parametrizations used in the past selecting only certain important parts of the code to be linearized

EXAMPLES OF REGULARIZATIONS (1) Regularization of vertical diffusion scheme: -20. -10. 0. 10. 20. Ri number 10.0 0.0 f(Ri) - 10.0 - 20.0 Function of the Richardson number Exchange coefficients K are function of the Richardson number: reduced perturbation of the exchange coefficients (Janisková et al., 1999): original computation of Ri modified in order to modify/reduce f’(Ri), or reducing a derivative, f’(Ri), by factor 10 in the central part (around the point of singularity ) reduction of the time step to 10 seconds to guarantee stable time integrations of the associated TL model (Zhu and Kamachi, 2000)  not possible in operational global models

EXAMPLES OF REGULARIZATIONS (2) selective regularization of the exchange coefficients K based on the linearization error and a criterion for the numerical stability (Laroche et al., 2002) perturbation of the exchange coefficients neglected, K’ = 0 (Mahfouf, 1999) in the operational ECMWF version used to the middle of 2008 New operational ECMWF version: using reduction factor for perturbation of the exchange coefficients

ECMWF LINEARIZED PHYSICS (as operational in 4D-Var) Currently used schemes in ECMWF operational 4D-Var minimizations – main simplifications with respect to the nonlinear versions are highlighted in red (Janisková and Lopez 2012): No evolution of surface variables Vertical diffusion: – mixing in the surface and planetary boundary layers, – based on K-theory and Blackadar mixing length, – exchange coefficients based on Louis et al. [1982], near surface, – Monin-Obukhov higher up, – mixed layer parameterization and PBL top entrainment recently added, – perturbations of exchange coefficients are smoothed out. Gravity wave drag: [Mahfouf 1999] – subgrid-scale orographic effects [Lott and Miller 1997], – only low-level blocking part is used. Dry processes: Radiation: – TL and AD of longwave and shortwave radiation [Janisková et al. 2002], – shortwave: only 2 spectral intervals (instead of 6 in nonlinear version), – longwave: called every 2 hours only. Non-orographic gravity wave drag: – TL and AD of the non-linear scheme for non-orographic gravity waves [Orr et al. 2010], – suppressing increments for momentum flux for the highest phase speed.

ECMWF LINEARIZED PHYSICS (as operational in 4D-Var) Large-scale condensation scheme: [Tompkins and Janisková 2004] – based on a uniform PDF to describe subgrid-scale fluctuations of total water, – melting of snow included, – precipitation evaporation included, – reduction of cloud fraction perturbation and in autoconversion of cloud into rain. Moist processes: Convection scheme: [Lopez and Moreau 2005] – mass-flux approach [Tiedtke 1989], – deep convection (CAPE closure) and shallow convection (q-convergence) – perturbations of all convective quantities included, – coupling with cloud scheme through detrainment of liquid water from updraught, – some perturbations (buoyancy, initial updraught vertical velocity) are reduced. After solving the threshold problems clear advantage of the diabatic TL evolution of errors compared to the adiabatic evolution

VALIDATION OF THE LINEARIZED PARAMETRIZATION SCHEMES Non-linear model: Forecast runs with particular modified/simplified physical parametrization schemes Check that Jacobians (=sensitivities) with respect to input variables look reasonable (not too noisy in space and time) classical validation: TL - Taylor formula, AD - test of adjoint identity Tangent-linear (TL) and adjoint (AD) model: examination of the accuracy of the linearization: comparison between finite differences (FD) and tangent-linear (TL) integration Singular vectors: Computation of singular vectors to find out whether the new schemes do not produce spurious unstable modes.

TANGENT-LINEAR DIAGNOSTICS Comparison: finite differences (FD)  tangent-linear (TL) integration

Zonal wind increments at model level ~ 1000 hPa [ 24-hour integration] FD TLWSPHYS TLADIAB TLADIAB – adiabatic TL model TLWSPHYS – TL model with the whole set of simplified physics (Mahfouf 1999)

TANGENT-LINEAR DIAGNOSTICS Comparison: finite differences (FD)  tangent-linear (TL) integration Diagnostics: • mean absolute errors: relative error

Impact of operational vertical diffusion scheme Temperature Impact of operational vertical diffusion scheme EXP - REF 10 20 30 40 50 60 REF = ADIAB 80N 60N 40N 20N 0 20S 40S 60S 80S relative improvement [%] X EXP adiabsvd || vdif © ECMWF 2011

X EXP - REF Temperature Impact of dry + moist physical processes (1st used setup) EXP - REF 10 20 30 40 50 60 REF = ADIAB 80N 60N 40N 20N 0 20S 40S 60S 80S relative improvement [%] X EXP adiabsvd || vdif + gwd + radold + lsp + conv © ECMWF 2011

X EXP - REF Temperature Impact of all physical processes (including improved schemes) EXP - REF 10 20 30 40 50 60 REF = ADIAB adiab adiabsvd vdif oper_old oper_2007 16 relative improvement [%] X 80N 60N 40N 20N 0 20S 40S 60S 80S EXP adiabsvd || vdif + gwd + rad + cloud+conv cycle new new new 2009 © ECMWF 2011

EXP - REF Temperature Impact of all physical processes (versions before and after July 2009) EXP - REF REF = ADIAB EXP = cycle before July 2009 EXP = cycle after July 2009 Changes in linearized radiation schemes

Impact of all physical processes adiab adiabsvd vdif oper_old oper_2007 EXP - REF Zonal wind relative improvement [%] X conv cycle new 2009 EXP - REF 20 18 Specific humidity X conv cycle new 2009 relative improvement [%] adiab adiabsvd vdif oper_old oper_2007

IMPACT OF THE LINEARIZED PHYSICAL PROCESSES IN 4D-VAR (1) comparisons of the operational version of 4D-Var against the version without linearized physics included shows: positive impact on analysis and forecast reducing precipitation spin-up problem when using simplified physics in 4D-Var minimization N.HEM : 500 hPa geopotential N.HEM : 700 hPa rel. humidity Tropics : 700 hPa rel.humidity Anomaly correlation: grey bars indicate significance at 95% confidence level July – September 2011

– – A2 – A1 IMPACT OF THE LINEARIZED PHYSICAL PROCESSES IN 4D-VAR (2) 1-DAY FORECAST ERROR OF 500 hPa GEOPOTENTIAL HEIGHT OPER (very simple radiation) vs. NEWRAD (new linearized radiation) (27/08/2001 12h t+24) 75.4 -30.3 63.8 -23.3 A2: FC_NEWRAD – ANAL_OPER A1: FC_OPER – ANAL_OPER -17.9 -10.0 A2 – A1 impact of new linearized radiation

Assimilation of rain and cloud related observations at ECMWF Operational: June 2005 – March 2009 – 1D+4D-Var assimilation of SSM/I brightness temperatures (TBs) in regions affected by rain and clouds. (Bauer et al. 2006 a, b) Since March 2009 – active all-sky 4D-Var assimilation of microwave imagers. (Bauer et al. 2010, Geer et al. 2010) Since November 2011- direct 4D-Var assimilation of NCEP Stage IV radar and gauge hourly precipitation data (Lopez 2011) Experimental: 1D-Var assimilation of cloud-related ARM observations. (Janisková et al. 2002) surface downward LW radiation, total column water vapour, cloud liquid water path Investigation of the capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances – using cloudy AIRS TBs. (Chevallier et al. 2004) 1D-Var assimilation of precipitation radar data. (Benedetti and Lopez 2003) 1D-Var assimilation of cloud radar reflectivity – retrieved from 35 GHz radar at ARM site. (Benedetti and Janisková 2004) 2D-Var assimilation of ARM observations affected by clouds & precipitation – using microwave TBs, cloud radar reflectivity, rain-gauge and GPS TCWV. (Lopez et al. 2006) 4D-Var assimilation of cloud optical depth from MODIS. (Benedetti & Janisková 2007) 1D+4D-Var assimilation of NCEP Stage IV hourly precipitation data over USA – combined radar + rain gauge observations. (Lopez and Bauer 2007) 1D+4D-Var of cloud radar reflectivity from CloudSat (Janisková el al. 2011) AIRS – Advanced Infrared Sounder ARM – Atmospheric Radiation Measurement programme GPS – Global Positioning System SSM/I – Special Infrared Sounder Reading, UK

Relative Humidity Wind Speed -0.1 0.05 0.05 0.1 forecast is better 4D-Var assimilation of SSM/I rainy brightness temperatures (Geer, Bauer et al. 2010) Impact of the direct 4D-Var assimilation of SSM/I all-skies TBs on the relative change in 5-day forecast RMS errors (zonal means). Period: 22 August 2007 – 30 September 2007 Relative Humidity Wind Speed -0.1 0.05 0.05 0.1 forecast is better forecast is worse

1D-Var assimilation of observations related to the physical processes For a given observation yo, 1D-Var searches for the model state x=(T,qv) that minimizes the cost function: Background term Observation term B = background error covariance matrix R = observation and representativeness error covariance matrix H = nonlinear observation operator (model space  observation space) (physical parametrization schemes, microwave radiative transfer model, reflectivity model, …) The minimization requires an estimation of the gradient of the cost function: The operator HT can be obtained: explicitly (Jacobian matrix) using the adjoint technique

“1D-Var+4D-Var” assimilation of observations related to precipitation 1D-Var on TBs or reflectivities 1D-Var on TMI or PR rain rates Observations interpolated on model’s T511 Gaussian grid TMI TBs or TRMM-PR reflectivities “Observed” rainfall rates Retrieval algorithm (2A12,2A25) 1D-Var moist physics + radiative transfer background T,qv “TCWVobs”=TCWVbg+∫zqv 4D-Var TRMM – Tropical Rainfall Measuring Mission TMI – TRMM Microwave Imager PR – Precipitation Radar

1D-Var on TMI data (Lopez and Moreau, 2003) Background PATER obs 1D-Var/RR PATER 1D-Var/TB Tropical Cyclone Zoe (26 December 2002 @1200 UTC) 1D-Var on TMI Rain Rates / Brightness Temperatures Surface rainfall rates (mm h-1)

1D-Var assimilation of cloud related observations (1) For a given observation yo, 1D-Var searches for the model state x=(T,qv) that minimizes the cost function: Background term Observation term H(x): moist physics or + radar/lidar radiative model (+ radiation scheme) x_b: Background T,q 1D-Var (analyzed T, q) Y: retrieved cloud parameters (level-2 products) backscatter cross-sections, reflectivities (level-1 products)

1D-Var assimilation of CloudSat cloud radar reflectivity (1) (QuARL project) OBS – CloudSat (94 GHz radar) FG AN – 1D-Var of cloud reflectivity Cloud reflectivity [dBZ] – 23/01/2007 over Pacific QuARL – Quantitative Assessment of Operation.Value of Space-Borne Radar and Lidar Measurements of Cloud and Aerosol Profiles

1D-Var assimilation of CloudSat cloud radar reflectivity (2) (QuARL project) Bias and standard deviation of first-guess FG vs.analysis AN departures for reflectivity STD.DEV. - reflectivity BIAS - reflectivity FG departure AN-refl departure height [km] height [km] FG departure AN-refl departure Comparison of FG and AN against cloud optical depth (i.e. independent observations) optical depth profile number

1D+4D-Var assimilation of CloudSat cloud radar reflectivity (Janisková et al. 2011) Impact on the subsequent forecast: Difference of 200-hPa wind rms errors for FC_exp– AN_ref T+12 T+24 RMS: ref 1.304 exp 1.259 RMS: ref 2.025 exp 1.978 T+36 T+48 RMS: ref 2.510 exp 2.416 RMS: ref 3.438 exp 3.361

Experimental 4D-Var assimilation of cloud optical depth from MODIS (1) (Benedetti and Janisková, 2008) Assimilation of cloud optical depth at 0.55 m from MODIS – fit to observations Scatter-plot of OBS versus FG Scatter-plot of OBS versus ANA BIAS = 0.22 RMS = 0.57 corr. coef. = 0.480 BIAS = 0.21 RMS = 0.51 corr. coef. = 0.672 Period: 2006040500 - 2006042000 Positive impact on the distribution of the ice water content, particularly in the Tropics. Impact on 10-day forecast positive for upper level temperature in the Tropics and neutral for the model wind. ECMWF 4D-Var is approaching a level of the technical maturity necessary for global assimilation of cloud related observations. Conclusions: © ECMWF 2012 MODIS – Moderate Resolution Imaging Spectroradiometer

Experimental 4D-Var assimilation of cloud optical depth from MODIS (2) Comparison with independent cloud observations MLS retrievals: Ice Water Content at 215 hPa MLS = Microwave Limb Sounder IWC [mg/m3] ECMWF model – CNTRL run ECMWF model – EXP run CNTRL run – MLS obs EXP run – MLS obs Courtesy of F. Li, Jet Propulsory Laboratory, CA, USA

data assimilation systems as they are needed: GENERAL CONCLUSIONS Physical parametrizations become important components in current variational data assimilation systems as they are needed: to link the model state to the observation quantities to evolve the model state in time during the assimilation Positive impact from including linearized physical parametrization schemes into the assimilating model has been demonstrated. However, there are several problems with including physics in adjoint models: – development and thorough validation require substantial resources – computational cost may be very high – non-linearities and discontinuities in physical processes must be treated with care Constraints and requirements when developing new simplified parametrizations for data assimilation: find a compromise between realism, linearity and computational cost evaluation in terms of Jacobians (not too noisy in space and time) systematic validation against observations comparison to the non-linear version used in forecast mode (trajectory) numerical tests of tangent-linear and adjoint codes for small perturbations validity of the linear hypothesis for perturbations with larger size (typical of analysis increments) © ECMWF 2012

REFERENCES Bauer P., Lopez P., Benedetti A., Salmond D. and Moreau E., 2006a: Implementation of 1D+4D-Var assimilation of precipitation affected microwave radiances at ECMWF. Part I: 1D-Va. Q. J. R. Meteorol. Soc., 132, 2277-2306 Bauer P., Lopez P., Salmond D., Benedetti A., Saarinen S. and Bonazzola M., 2006b: Implementation of 1D+4D-Var assimilation of precipitation affected microwave radiances at ECMWF. Part II: 4D-Var. Q. J. R. Meteorol. Soc., 132, 2307-2332 Bauer, P., Geer A.J., Lopez P. and Salmond D., 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc., 136, 1868-1885 Benedetti A. and Janisková M., 2004: Advances in cloud assimilation at ECMWF using ARM radar data. Extended abstract for ICCP, Bologna 2004 Benedetti A. and Janisková M., 2008: Assimilation of MODIS cloud optical depths in the ECMWF model. Mon. Wea. Rev., 136, 1727-1746 Errico R.M., 1997: What is an adjoint model. Bulletin of American Met. Soc., 78, 2577-2591 Fillion L. and Errico R., 1997: Variational assimilation of precipitation data using moist convective parametrization schemes: A 1D-Var study. Mon. Weather Rev., 125, 2917-2942 Fillion L. and Mahfouf J.-F., 2000: Coupling of moist-convective and stratiform precipitation processes for variational data assimilation. Mon. Weather. Rev., 128, 109-124 Geer A.J., Bauer P. and Lopez P., 2010: Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Q. J. R. Meteorol. Soc., 136, 1886-1905 Klinker E., Rabier F., Kelly G. and Mahfouf J.-F., 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part III: Experimental results and diagnostics with operational configuration. Q J. R. Meteorol. Soc., 126, 1191-1215 Chevallier F., Bauer P., Mahfouf J.-F. and Morcrette J.-J., 2002: Variational retrieval of cloud cover and cloud condensate from ATOVS data. Q. J. R. Meteorol. Soc., 128, 2511-2526 Chevallier F., Lopez P., Tompkins A.M., Janisková M. and Moreau E., 2004: The capability of 4D-Var systems to assimilate cloud_affected satellite infrared radiances. Q. J. R. Meteorol. Soc., 130, 917-932 Janisková M., Thépaut J.-N. and Geleyn J.-F., 1999: Simplified and regular physical parametrizations for incremental four-dimensional variational assimilation. Mon. Weather Rev., 127, 26-45 Janisková M., Mahfouf J.-F., Morcrette J.-J. and Chevallier F., 2002: Linearized radiation and cloud schemes in the ECMWF model: Development and evaluation. Q. J. R. Meteorol. Soc.,128, 1505-1527 Janisková, M., Mahfouf, J.-F. and Morcrette, J.-J., 2002: Preliminary studies on the variational assimilation of cloud-radiation observations. Q. J. R. Meteorol. Soc., 128, 2713-2736 © ECMWF 2012

Janisková M., 2004: Impact of EarthCARE products on Numerical Weather Prediction. ESA Contract Report, 59 pp. Janisková M., Lopez P. and Bauer P., 2011: Experimental 1D+4D-Var assimilation of CloudSat observations. Q. J. R. Meteorol. Soc., DOI:10.1002/qj.988 Janisková M. and Lopez P., 2012: Linearized physics for data assimilation at ECMWF. ECMWF Technical Memorandum 666, 26 pp. Laroche S., Tanguay M. and Delage Y., 2002: Linearization of a simplified planetary boundary layer parametrization. Mon. Weather Rev., 130, 2074-2087 Lopez P. and Moreau E., 2005: A convection scheme for data assimilation purposes: Description and initial test. Q. J. R. Meteorol. Soc., 131, 409-436 Lopez. P., Benedetti A., Bauer P., Janisková M. and Köhler M.., 2006: Experimental 2D-Var assimilation of ARM cloud and precipitation observations. Q. J. R. Meteorol. Soc., 132, 1325-1347 Lopez P., 2007: Cloud and precipitation parametrizations in modeling and in variational data assimilation. A review. J. Atmos. Sc., 64, 3770-3788 Lopez P. and Bauer P., 2007: “1D+4D-Var” assimilation of NCEP Stage IV radar and gauge hourly precipitation data at ECMWF. Mon. Weather Rev., 135, 2506-2524 Lopez P., 2011: Direct 4D-Var assimilation of NCEP Stage IV radar and gauge precipitation data at ECMWF. Mon. Weather Rev., 139, 2098-2116 Mahfouf J.-F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A, 147-166 Marécal V. and Mahfouf J.-F., 2000: Variational retrieval of temperature and humidity profiles from TRMM precipitation data. Mon. Weather Rev., 128, 3853-3866 Marécal V. and Mahfouf J.-F., 2002: Four-dimensional variational assimilation of total column water vapour in rainy areas. Mon. Weather Rev., 130, 43-58 Marécal V. and Mahfouf J.-F., 2003: Experiments on 4D-Var assimilation of rainfall data using an incremental formulation. Q J. R. Meteorol. Soc., 129, 3137-3160 Moreau E., Lopez P., Bauer P., Tompkins A.M., Janisková M. And Chevallier F., 2004: Variational retrieval of temperature and humidity profiles using rain rates versus microwave brightness temperatures. Q. J. R. Meteorol. Soc., 130, 827-852 Tompkins A.M. and Janisková M. , 2004: A cloud scheme for data assimilation: Description and initial tests. Q. J. R. Meteorol. Soc., 130, 2495-2518 Zhu J. and Kamachi M., 2000: The role of the time step size in numerical stability of tangent linear models. Mon. Weather. Rev., 128, 1562-1572