Study of the level of total electron content disturbance in the middle-latitude and Arctic regions by GPS data Natalia P. Perevalova (1), Ilya K. Edemskiy.

Slides:



Advertisements
Similar presentations
Manifestation of strong geomagnetic storms in the ionosphere above Europe D. Buresova(1), J. Lastovicka(1), and G. DeFranceschi(2) (1)Institute of Atmospheric.
Advertisements

Study of Pi2 pulsations observed from MAGDAS chain in Egypt E. Ghamry 1, 2, A. Mahrous 2, M.N. Yasin 3, A. Fathy 3 and K. Yumoto 4 1- National Research.
Earth Science Sector Characterization of high latitude GPS sensed ionospheric irregularities: Case studies Reza Ghoddousi-Fard¹, Paul Prikryl², Kjellmar.
Propagation Index and Short Wave Communications Rodney Wolfe N3XG.
Storm-time total electron content and its response to penetration electric fields over South America P. M. de Siqueira, E. R. de Paula, M. T. A. H. Muella,
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Spatial distribution of the auroral precipitation zones during storms connected with magnetic clouds O.I. Yagodkina 1, I.V. Despirak 1, V. Guineva 2 1.
Status of GNSS ionospheric Study in Korea
Space Weather Workshop, Boulder, CO, April 2013 No. 1 Ionospheric plasma irregularities at high latitudes as observed by CHAMP Hermann Lühr and.
1 Signal Propagation (Seeber, 2.3).. 2 Ch. 3 Clock definition.
Abstract Since the ionosphere is the interface between the Earth and space environments and impacts radio, television and satellite communication, it is.
Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire,
1 Signal Propagation (Seeber, 2.3).. 2 Ch. 3 Clock definition.
11.1 Magnetic Dipole Field Magnetic Dipole Field (2) B 
Introduction The primary geomagnetic storm indicator is the Dst index. This index has a well established ‘recipe’ by which ground-based observations are.
M. Menvielle and A. Marchaudon ESWW2 M. Menvielle (1) and A. Marchaudon (2) (1) Centre d’études des Environnements Terrestre et Planétaires UMR 8615 IPL/CNRS/UVSQ.
Solar wind-magnetosphere- atmosphere coupling: effects of magnetic storms and substorms in atmospheric electric field variations Kleimenova N., Kozyreva.
Southern Taiwan University Department of Electrical engineering
Global Electron Content as a New Ionospheric Index. Comparison With IRI Modeling Results Institute of Solar-Terrestrial Physics SD RAS, Irkutsk, Russia.
CR variation during the extreme events in November 2004 Belov (a), E. Eroshenko(a), G. Mariatos ©, H. Mavromichalaki ©, V.Yanke (a) (a) IZMIRAN), ,
Effects of ionospheric small- scale structures on GNSS G. WAUTELET Royal Meteorological Institute of Belgium Ionospheric Radio Systems & Techniques (IRST)
Statistical Analysis of Solar Geomagnetic Storm Occurrences By: Seth Sivak.
Magnetospheric ULF wave activity monitoring based on the ULF-index OLGA KOZYREVA and N. Kleimenova Institute of the Earth Physics, RAS.
Sub-ionospheric Point hmhm Ionosphere Earth Surface Ionospheric Piercing Point High Resolution GPS-TEC Gradients in the Northern Hemisphere Ionospheric.
Bucharest, May Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria GEOMAGNETIC VARIATIONS AND EARTHQUAKE ACTIVITY.
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
T. Ogawa 1, T. Adachi 2, and N. Nishitani 3 1) NICT, Japan 2) Stanford Univ., USA 3) STE Lab., Nagoya Univ., Japan Medium-Scale Traveling Ionospheric Disturbances.
VTEC prediction using a recursive artificial neural networks approach in Brazil: initial results Engineer School - University of São Paulo Wagner Carrupt.
Joint observation of large-scale travelling ionospheric disturbances using SuperDARN Hokkaido radar and Eastern Siberia chirp sounders network Alexey Oinats.
VARIABILITY OF TOTAL ELECTRON CONTENT AT EUROPEAN LATITUDES A. Krankowski(1), L. W. Baran(1), W. Kosek (2), I. I. Shagimuratov(3), M. Kalarus (2) (1) Institute.
BEHAVIOR OF THE NM EMISSION IN MLT REGION DURING STRATOSPHERIC WARMING EVENTS I.V. Medvedeva, A.V. Mikhalev, M.A. Chernigovskaya Institute of Solar-Terrestrial.
THE REACTION OF MID-LATITUDE IONOSPHERE ON STRONG IONOSPHERIC STORMS ON THE BASE OF THE EAST- SIBERIAN GROUND-BASED RADIO INSTRUMENT NETWORK DATA B.G.
M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products.
Mapping high-latitude TEC fluctuations using GNSS I.I. SHAGIMURATOV (1), A. KRANKOWSKI (2), R. SIERADZKI (2), I.E. ZAKHARENKOVA (1,2), Yu.V. CHERNIAK (1),
Comparison of the electron density profiles measured with the Incoherent Scatter Radar, Digisonde DPS-4 and Chirp-Ionosonde Ratovsky K.G., Shpynev* B.G.,
The Thermosphere/Ionosphere Response to Solar Activity During the October/November 2003 Storms P. R. Straus 1, G. Crowley 2, R. R. Meier 3, L. J. Paxton.
The observations of TEC night-time enhancement in equatorial anomaly region Chen Yanhong Ma Guanyi Center for Space science and Applied Research,Chinese.
Guan Le NASA Goddard Space Flight Center Challenges in Measuring External Current Systems Driven by Solar Wind-Magnetosphere Interaction.
Ionospheric irregularities observed with a GPS network in Japan TOHRU ARAMAKI[1],Yuichi Otsuka[1],Tadahiko Ogawa[1],Akinori Saito[2] and Takuya Tsugawa[2]
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
ABSTRACT Disturbances in the magnetosphere caused by the input of energy from the solar wind enhance the magnetospheric currents and it carries a variation.
0 7th ESWW, Bruges, Ionospheric Scintillations Propagation Model Y. Béniguel, J-P Adam IEEA, Courbevoie, France.
What is a geomagnetic storm? A very efficient exchange of energy from the solar wind into the space environment surrounding Earth; These storms result.
Forecasting GPS Scintillations For Low Latitude Stations, in Brazil, using Real-Time Space Weather Data. Enivaldo Bonelli Federal.
Characteristics and source of the electron density irregularities in the Earth’s ionosphere Hyosub Kil Johns Hopkins University / Applied Physics Laboratory.
Thermospheric density variations due to space weather Tiera Laitinen, Juho Iipponen, Ilja Honkonen, Max van de Kamp, Ari Viljanen, Pekka Janhunen Finnish.
Effects of January 2010 stratospheric sudden warming in the low-latitude ionosphere L. Goncharenko, A. Coster, W. Rideout, MIT Haystack Observatory, USA.
Space Weather Service in Indonesia Clara Y. Yatini National Institute of Aeronautics and Space (LAPAN)
1 NSSC National Space Science Center, Chinese academy of Sciences FACs connecting the Ionosphere and Magnetosphere: Cluster and Double Star Observations.
NATIONAL INSTITUTE FOR SPACE RESEARCH – INPE/MCT SOUTHERN REGIONAL SPACE RESEARCH CENTER – CRS/CCR/INPE – MCT FEDERAL UNIVERSITY OF SANTA MARIA - UFSM.
Interminimum Changes in Global Total Electron Content and Neutral Mass Density John Emmert, Sarah McDonald Space Science Division, Naval Research Lab Anthony.
Global and Regional Total Electron Content Anthony Mannucci, Xing Meng, Panagiotis Vergados, Attila Komjathy JPL/Caltech Collaborators: Sarah E. McDonald,
Seasonal and year-to-year patterns of atmospheric and ionospheric variabilities over Eastern Siberia Irina Medvedeva and Konstantin Ratovsky Institute.
Status of GNSS ionospheric Study in Korea
1st VarSITI General Symposium 6-11 June 2016 Albena, Bulgaria
Ground-based GNSS data for the correction of the ionospheric model using modified solar index D.S. Kotova1,2, V. Ovodenko3, Yu.V. Yasyukevich4, I. Nosikov1,2,
Ionospheric fluctuations structure during strong geomagnetic storm by incoherent scatter radar and GPS data Yu.V. CHERNIAK(1), I.I. SHAGIMURATOV(1), A.
Mpho Tshisaphungo, Lee-Anne McKinnell and John Bosco Habarulema
Mid-latitude Electron Density Variations Under Magnetospheric Substorm Conditions As Determined From Istanbul Dynasonde Observations Aysegul Ceren MORAL,
Effects of Dipole Tilt Angle on Geomagnetic Activities
European Space Weather Week – ESWW#14
Oerstedt+Champ+Swarm → Empirical models →New parameters/knowledge
Results and Discussions Data Used and Methodology
Subauroral heliosphere-geosphere coupling during November 2004 ionospheric storms: F2-region, North-East Asia Chelpanov M. A., Zolotukhina N.A. Institute.
Swedish Institute of Space Physics, Kiruna
The Timevarying Ionosphere. measured by GPS
Evaluation of IRI-2012 by comparison with JASON-1 TEC and incoherent scatter radar observations during the solar minimum period Eun-Young Ji,
A. Ippolito(1), C. Cesaroni(1) and L. Spogli(1,2)  
Added-Value Users of ACE Real Time Solar Wind (RTSW) Data
Quantifying ionospheric disturbances for user oriented applications
Presentation transcript:

Study of the level of total electron content disturbance in the middle-latitude and Arctic regions by GPS data Natalia P. Perevalova (1), Ilya K. Edemskiy (1), Olga V. Timofeeva (1, 2), Darya D. Katashevtseva (1, 2), Anna S. Polyakova (1) (1) Institute of Solar-Terrestrial Physics, SB RAS (2) Irkutsk State University Bolshie Koty, Russia

Baikal School, Total Electron Content (TEC) The total electron content I is the electron density Ne integrated along a beam: TEC calculation using the phase measurements at two GNSS frequencies: TEC

Baikal School, WTEC index  GPS/GLONASS station exercises control of TEC variations in a radius of km;  The time observation of a GPS satellite at the station is about 2-6 hours. WTEC is multi-day series of averaged TEC disturbance [Berngardt O.I., Voeykov S.V., Ratovsky K.G. Using a single GPS/GLONASS receiver for estimating the level of ionospheric disturbance // XXXI URSI General Assembly and Scientific Symposium. Beijing, China. August 16-23, 2014: abstracts GP2.31]

Baikal School, Measurement data for 2013 Filtration period: minutes - medium-scale ionospheric disturbances; minutes- large-scale ionospheric disturbances. Planetary geomagnetic indexes: AE characterizes high latitudes; Dst, low latitudes; Kp, middle latitudes.

Baikal School, WTEC variations in March and June, 2013 The WTEC variations for two ranges of periods (01-10 min, min) at the NRIL, MOND, ORDA stations and behavior of Dst, Kp, AE geomagnetic indexes. The vertical dashed lines indicate sudden storm commencements. middle-latitudes high-latitudes geomagnetic indexes

ST at 100 km ST at 300 km Baikal School, Diurnal-seasonal WTEC variations The Diurnal-seasonal WTEC variations for ranges of periods of min (a, c) and min (b, d) at the NRIL (a, b) and MOND (c, d) stations. The black lines mark sunrise time at 100 km (solid) and 300 km (dashed). ST stands for the solar terminator.

CONCLUSIONS Baikal School, In Arctic region  The minimal level of disturbance intensity does not depend on the season.  WTEC behavior correlates well with the variations in AE index and does less with the behavior of the Dst index.  WTEC variations caused by the solar terminator are absent. In middle latitudes  Diurnal WTEC variations are particularly pronounced over the year and have also some seasonal features.  The minimal level of disturbance intensity in summer is higher than in winter.  The solar terminator generates intense large-scale ionospheric disturbances, but does not cause medium-scale ones.

THANK YOU FOR YOUR ATTENTION! Baikal School, 20158

Day of the year (UT) Time (t) nT Baikal School, 20159

Solar terminator 2013, days LT, h Baikal School,

Solar terminator Baikal School,

Все спутники GPS передают сигналы на двух одинаковых частотах: f 1 = МГц и f 2 = МГц Спутники ГЛОНАСС передают сигналы на разных частотах в двух диапазонах. Первый диапазон имеет центральную частоту f01= 1602 МГц, частота передачи спутников определяется по формуле: f1k=f01+k*Δf1 где Δf1=0,5625 МГц, k - номер частотного канала (k=-7,-6,-5,...0,...). Второй диапазон имеет центральную частоту f02 = 1246 МГц, частота передачи спутников определяется по формуле: f2k=f02+k* Δf2 где Δf2= МГц, k - номер частотного канала (k=-7,-6,-5,...0,...). Радиосигналы в ГНСС GPS и ГЛОНАСС Baikal School,