Wavelet Turbulence for Fluid Simulation 논문 세미나 2008.10.02 윤종철.

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

My First Fluid Project Ryan Schmidt. Outline MAC Method How far did I get? What went wrong? Future Work.
Canopy Spectra and Dissipation John Finnigan CSIRO Atmospheric Research Canberra, Australia.
Realistic Simulation and Rendering of Smoke CSE Class Project Presentation Oleksiy Busaryev TexPoint fonts used in EMF. Read the TexPoint manual.
Christopher Batty and Robert Bridson University of British Columbia
Dynamics and Statistics of Quantum Turbulence at Low Temperatures
An Eulerian Divergence Preserving Approach for Partitioned FSI Simulations on Cartesian Grids M. Mehl, M. Brenk, I. Muntean, T. Neckel, T. Weinzierl TU.
Generation of Synthetic Turbulence in Arbitrary Domains Lasse Gilling and Søren R. K. Nielsen Department of Civil Engineering, Aalborg University, Denmark.
Vortex Fluid Structure For Smoke Control SCA 2006 Alexis Angelidis Alexis Angelidis (1) Fabrice Neyret Fabrice Neyret (2) Karan Singh Karan Singh (1) Derek.
A Painting Interface for Interactive Surface Deformations Jason Lawrence Thomas Funkhouser Princeton University.
Evolving Sub-Grid Turbulence for Smoke Animation Hagit Schechter Robert Bridson SCA 08.
Combating Dissipation. Numerical Dissipation  There are several sources of numerical dissipation in these simulation methods  Error in advection step.
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
CSE351/ IT351 Modeling and Simulation
Hybrid Simulation of Ion-Cyclotron Turbulence Induced by Artificial Plasma Cloud in the Magnetosphere W. Scales, J. Wang, C. Chang Center for Space Science.
University of North Carolina - Chapel Hill Fluid & Rigid Body Interaction Comp Physical Modeling Craig Bennetts April 25, 2006 Comp Physical.
Combined Lagrangian-Eulerian Approach for Accurate Advection Toshiya HACHISUKA The University of Tokyo Introduction Grid-based fluid.
Visual Simulation of Smoke SIGGRAPH’01 Ronald Fedkiw, Jos Stam and Henrik Wann Jensen Stanford University & Alias|wavefront.
EMLAB 1 Power Flow and PML Placement in FDTD. EMLAB 2 Lecture Outline Review Total Power by Integrating the Poynting Vector Total Power by Plane Wave.
LES of Turbulent Flows: Lecture 3 (ME EN )
Adaptive Cloud Simulation Using Position Based Fluids
Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan.
Fluid Simulation for Computer Animation Greg Turk College of Computing and GVU Center Georgia Institute of Technology.
Wavelet Analysis for Engineered Log Jams William Chen Eco-informatics Summer Institute 22 August
Motivation  Movie  Game  Engineering Introduction  Ideally  Looks good  Fast simulation  Looks good?  Look plausible  Doesn’t need to be exactly.
2015/8/29 A Semi-Lagrangian CIP Fluid Solver Without Dimensional Splitting Doyub Kim Oh-Young Song Hyeong-Seok Ko presented by ho-young Lee.
Zhaorui Li and Farhad Jaberi Department of Mechanical Engineering Michigan State University East Lansing, Michigan Large-Scale Simulations of High Speed.
1/45 A Fast Rendering Method for Clouds Illuminated by Lightning Taking into Account Multiple Scattering Yoshinori Dobashi (Hokkaido University) Yoshihiro.
A Fast Simulation Method Using Overlapping Grids for Interactions between Smoke and Rigid Objects Yoshinori Dobashi (Hokkaido University) Tsuyoshi Yamamoto.
0 Local and nonlocal conditional strain rates along gradient trajectories from various scalar fields in turbulence Lipo Wang Institut für Technische Verbrennung.
Ye Zhao, Zhi Yuan and Fan Chen Kent State University, Ohio, USA.
Simulations of Compressible MHD Turbulence in Molecular Clouds Lucy Liuxuan Zhang, CITA / University of Toronto, Chris Matzner,
R. Oran csem.engin.umich.edu SHINE 09 May 2005 Campaign Event: Introducing Turbulence Rona Oran Igor V. Sokolov Richard Frazin Ward Manchester Tamas I.
1 LES of Turbulent Flows: Lecture 2 Supplement (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Fall 2014.
A particle-gridless hybrid methods for incompressible flows
Reynolds-Averaged Navier-Stokes Equations -- RANS
Advected textures Fabrice Neyret EVASION - GRAVIR / IMAG - INRIA Grenoble, France.
Haar Wavelets.
Detail-Preserving Fluid Control N. Th ű rey R. Keiser M. Pauly U. R ű de SCA 2006.
ON MULTISCALE THEORY OF TURBULENCE IN WAVELET REPRESENTATION M.V.Altaisky
Stable, Circulation- Preserving, Simplicial Fluids Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun.
LES of Turbulent Flows: Lecture 2 (ME EN )
Turbulent Dynamo Stanislav Boldyrev (Wisconsin-Madison) Fausto Cattaneo (Chicago) Center for Magnetic Self-Organization in Laboratory and Astrophysical.
Physics of turbulence at small scales Turbulence is a property of the flow not the fluid. 1. Can only be described statistically. 2. Dissipates energy.
Advances in digital image compression techniques Guojun Lu, Computer Communications, Vol. 16, No. 4, Apr, 1993, pp
Two-way Coupled SPH and Particle Level Set Fluid Simulation
FlowFixer: Using BFECC for Fluid Simulation ByungMoon Kim Yingjie Liu Ignacio Llamas Jarek Rossignac Georgia Institute of Technology.
Discontinuous Displacement Mapping for Volume Graphics, Volume Graphics 2006, July 30, Boston, MA Discontinuous Displacement Mapping for Volume Graphics.
1 LES of Turbulent Flows: Lecture 7 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Fall 2014.
Week 11 – Spectral TV and Convex analysis Guy Gilboa Course
Linear Algebra Operators for GPU Implementation of Numerical Algorithms J. Krüger R. Westermann computer graphics & visualization Technical University.
LES of Turbulent Flows: Lecture 5 (ME EN )
Florida State University V. Mihalef B. Unlusu D. Metaxas M. Sussman M. Y. Hussaini Physics-Based Boiling Simulation.
Tree methods, and the detection of vortical structures in the vortex filament method Andrew Baggaley, Carlo Barenghi, Jason Laurie, Lucy Sherwin, Yuri.
Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques SIGGRAPH 2006 Geoffrey Irving Eran Guendelman Frank Losasso.
Milton Garces, Claus Hetzer, and Mark Willis University of Hawaii, Manoa Source modeling of microbarom signals generated by nonlinear ocean surface wave.
CSE 872 Dr. Charles B. Owen Advanced Computer Graphics1 Water Computational Fluid Dynamics Volumes Lagrangian vs. Eulerian modelling Navier-Stokes equations.
1 LES of Turbulent Flows: Lecture 7 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
1 07/11/07 Using an Event-Based Approach to Improve the Multimodal Rendering of 6DOF Virtual Contact Jean Sreng, Florian Bergez, Jérémie Le Garrec, Anatole.
ARENA08 Roma June 2008 Francesco Simeone (Francesco Simeone INFN Roma) Beam-forming and matched filter techniques.
Animating smoke with dynamic balance Jin-Kyung Hong Chang-Hun Kim 발표 윤종철.
7. Design and Performance. 7.1 INTRODUCTION Good Performance = Careful Design x Careful Choice of Coding Parameters [ Issues on this Chapter ] The design.
Interesting papers on SIGGRAPH 2005 Korea University Computer Graphics Lab. Jin-Kyung Hong.
Modeling Astrophysical Turbulence
Introduction to Symmetry Analysis
Fourier Analyses Time series Sampling interval Total period
A topology-based approach towards
Transition in Energy Spectrum for Forced Stratified Turbulence
Particle-in-Cell Methods
Low Order Methods for Simulation of Turbulence in Complex Geometries
Presentation transcript:

Wavelet Turbulence for Fluid Simulation 논문 세미나 윤종철

목차 Abstract 1.Introduction 2.Previous Works 3.Procedural Wavelet Turbulence 1.Incompressible, Band-Limited Noise 2.Kolmogorov Wavelet Turbulence 4.High-Resolution Fluid Synthesis 1.Background 2.Injecting Turbulence 3.Detecting Scattering 4.Texture Distortion 5.Final Algorithm 6.Complexity 5.Results 6.Conclusions

Abstract 저해상도 VS 고해상도  빠른 속도로 원하는 해상도의 결과를 얻는 것이 목표 빠름 Not detail 느림 detail

Abstract High spatial resolution 유체 시뮬레이션을 위한 wavelet method 제안 Post-processing step 으로 디테일을 더함 Linear system 안 풀고, 병렬화 쉽고, 약간 의 보조 array 만 필요 고해상도, 저해상도 독립적으로 편집 가능

1. Introduction Visual simulation of fluids 는 지난 10 년간 Considerable progress but sc alability 와 user interaction 여전히 problem Large-scale phenomena simulation 할 때 memory 사용량 linear increase, 실행 시간 linear increase 보다 더 오래 걸림 => small-scale 유체 detail 을 procedurally 발생 algorithm 제안 detail 잃은 곳에 incompressible turbulence function 으로 다시 생성 velocity field 만 input 으로 필요 보통 fluid solver 로 해상도 높이면 effective viscosity 변해 모션 달라짐 본 논문은 existing structures 유지됨

1. Introduction Contributions An incompressible turbulence function that can generate arbitrary energy spectra A method for estimating the small-scale turbulence that is lost by a simulation, and re-synthesizing it in a way consistent with Kolmogorov theory A method of preserving the temporal coherence of the synthesized turbulence A large- and small-scale fluid detail decoupling that allows the latter to be edited independently

1. Introduction Contributions 임의의 에너지 spectra 를 발생시킬 수 있는 incompressible turbulence function 잃어버린 small-scale turbulence 를 추정하는, 그리고 일관된 Kolmogorove theory 를 사용하여 재합성하는 기법 합성된 turbulence 의 temporal coherence 유지 기법 large- 그리고 small-scale fluid 디테일 독립적으로 편 집 가능

2. Previous Works Adaptive Refinement Octree Graded Tetrahedra [Lossaso et al.2004] [Shi and Yu 2004] [Klingner et al. 2006]

2. Previous Works Dissipation Suppression [Selle et al. 2005] [Kim et al. 2006] [Selle et al. 2008] [Fedkiw et al. 2001] Vortex Methods MacCormack / BFECC

2. Previous Works Turbulence Modeling [Stam and Fiume 1993][Rasmussen et al. 2001]

Back ground (Fourier Transform, Wavelet Transform) Fourier Transform 시간축의 파형을 주파수축으로 변환 – 주파수와 위상 크기가 다른 정현파 (sin,cos) 의 조합으로 모든 파형을 만들어 낼 수 있음 -> 모든 파형은 주파수별 위상과 크기가 다른 정현파로 분리됨 –ex) 이퀄라이져 » 음악신호에 들어있는 주파수 성분을 각각 나누어 크기 가시화. 수백 Hz 에서 20khz 까지 순간 주파수대역의 신 호 크기가 디스플레이 – 임의의 파형을 주파수가 다른 정현파들로 분리 시켜 놓은 것이 바로 푸리에 변환

Back ground (Fourier Transform, Wavelet Transform) Fourier Transform Wavelet Transform

3. Procedural Wavelet Turbulence

Notation –Bold 는 vector, non-bold 는 scalar –x 는 spatial position –k 는 spectral band, u 는 velocity field –Carat 은 wavelet transform – 는 spectral band k 안의 position x 에서 velocity u 의 spectral component –N 큰 grid, n 은 작은 grid

3-1. Incompressible, Band-Limited Noise Wavelet Noise [Cook and DeRose 2005] 사용 [Bridson et al. 2007] 에서 처럼 scalar field 의 Curl 로 divergence-free field 생성

3-2. Kolmogorov Wavelet Turbulence A velocity field

3-2. Kolmogorov Wavelet Turbulence Frequency Decomposition

3-2. Kolmogorov Wavelet Turbulence Frequency Decomposition

3-2. Kolmogorov Wavelet Turbulence 한 grid cell x 에서 kinetic energy e 정의 모든 cell 의 e(x) 합은 total energy e t 각 band k 에 대해 e t 를 계산하면 energy spectrum 을 얻음 Kolmogorov theory 의 key results 중에 하나는 turbu lent fluid 의 energy spectrum 이 5/3 power distributi on 에 접근한다는 것 C 와 입실론은 Kolmogorov 상수이고 unit mass 당 에너지 소실률 의미

3-2. Kolmogorov Wavelet Turbulence Noise function w 를 사용하여, 이 power dis tribution 을 생성하는 속도 필드를 procedur ally 만들 수 있음 식 (3) 을 이용하여

3-2. Kolmogorov Wavelet Turbulence 를 w(x) 로 대체 – i 는 spectral band 를 제어하는데 사용 Discussion : (7) 과 비슷함

3-2. Kolmogorov Wavelet Turbulence Energy Spectrum

3-2. Kolmogorov Wavelet Turbulence Energy Spectrum

3-2. Kolmogorov Wavelet Turbulence

4. High-Resolution Fluid Synthesis 4.1 Background 물리적으로 5/3 distribution 은 scattering 때문에 발생 –Forward scattering »Eddy 는 incompressible field 에 의해 advect 되기 때문에 한 방향으로 stretch, 다른 방향으로 compress 되고 결국 이 deformations 는 반짜리 사이즈 두 개의 eddy 로 나뉨 –Back scattering » 작은 eddies 가 큰 eddy 로 combine 될 때 발생 그러나 forward scattering 이 보통 지배적임

4-2. Injecting Turbulence 목표는 저해상도 속도 필드로부터 고해상 도 density field D 를 합성하는 것 : 고해상도 위치 X 에서 u 를 interpolation : U 로 D 를 advection u 에서 가장 작은 eddies 의 energy e t (n/2) 를 계산하여 weight 로 사용

4-2. Injecting Turbulence

4-3. Detecting Scattering Texture Advection [Neyret 2003] texture coordinate 의 set 을 flow 를 따라 advection Texture coordinates 의 Jacobian 을 사용하여 local d eformation 의 양을 계산 Threshold 보다 크거나 작으면 regenerate

4-4. Texture Distortion advect 된 texture coordinates 가 stretch 하 고 rotate 할 때 y 가 incompressibility 를 위배 할 수 있음 Cartesian axes 를 texture space 로 projecti on, directional derivative 를 구하는 것으로 해결

4-5. Final Algorithm

4-6. Complexity 거의 모든 스텝은 smaller n^3 grid 상에서 일어남 큰 grid 는 D, D 는 메모리 사용량이 많아서 약점 -> 파티클 사용하면 D 필요 없음

5. Results

6. Conclusions Add physical detail as post-processing Preserves vortex frequencies Fast, efficient, low memory Relatively simple to implement Limitations Cannot reproduce “correct” high-res solution Obstacle interaction depends on low resolution Vortex advection limited due to regeneration

END