Wireless Communication Technologies 1 Outline 2.5.1 Introduction 2.5.2 OFDM Basics 2.5.3 Performance sensitivity for imperfect circuit 2.5.4 Timing and.

Slides:



Advertisements
Similar presentations
OFDM Transmission over Wideband Channel
Advertisements

OFDM Transmission Technique Orthogonal Frequency Division Multiplexer
(Orthogonal Frequency Division Multiplexing )
Chapter : Digital Modulation 4.2 : Digital Transmission
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
1 Helsinki University of Technology,Communications Laboratory, Timo O. Korhonen Data Communication, Lecture6 Digital Baseband Transmission.
S Digital Communication Systems Bandpass modulation II.
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
Division multiplexing
a By Yasir Ateeq. Table of Contents INTRODUCTION TASKS OF TRANSMITTER PACKET FORMAT PREAMBLE SCRAMBLER CONVOLUTIONAL ENCODER PUNCTURER INTERLEAVER.
Introduction to OFDM Ref: OFDM_intro.pdf
Digital transmission over a fading channel Narrowband system (introduction) Wideband TDMA (introduction) Wideband DS-CDMA (introduction) Rake receiver.
Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems Sinem Colet, Mustafa Ergen, Anuj Puri, and Ahmad Bahai IEEE TRANSACTIONS ON BROADCASTING,
MARCH 14, 2009 Telecom Engineering Research Lab, INHA University, Korea S.M.R. Islam Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems.
Chapter 5 Analog Transmission
Channel Estimation for Mobile OFDM
ICI Mitigation for Pilot-Aided OFDM Mobile Systems Yasamin Mostofi, Member, IEEE and Donald C. Cox, Fellow, IEEE IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
Diversity techniques for flat fading channels BER vs. SNR in a flat fading channel Different kinds of diversity techniques Selection diversity performance.
ICI mitigation in OFDM systems 2005/11/2 王治傑. 2 Reference Y. Mostofi, D.C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE trans. on wireless.
IERG 4100 Wireless Communications
APRIL 2002, PARISIPCN02 M. Ergen A Survey on Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems by Mustafa Ergen Authors: Sinem Coleri,
1 EQ2430 Project Course in Signal Processing and Digital Communications - Spring 2011 On phase noise and it effect in OFDM communication system School.
1 Mobile Communication Systems 1 Prof. Carlo Regazzoni Prof. Fabio Lavagetto.
1 Synchronization for OFDMA System Student: 劉耀鈞 Advisor: Prof. D. W. Lin Time: 2006/3/16.
for Wireless Communications
#7 1 Victor S. Frost Dan F. Servey Distinguished Professor Electrical Engineering and Computer Science University of Kansas 2335 Irving Hill Dr. Lawrence,
Wireless communication channel
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 12 Feb. 24 nd, 2014.
Usage of OFDM in a wideband fading channel OFDM signal structure Subcarrier modulation and coding Signals in frequency and time domain Inter-carrier interference.
Digital transmission over a fading channel Narrowband system (introduction) BER vs. SNR in a narrowband system Wideband TDMA (introduction) Wideband DS-CDMA.
Lecture 3-1: Coding and Error Control
ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING(OFDM)
Improvements in throughput in n The design goal of the n is “HT” for High Throughput. The throughput is high indeed: up to 600 Mbps in raw.
CHAPTER 6 PASS-BAND DATA TRANSMISSION
Rake Reception in UWB Systems Aditya Kawatra 2004EE10313.
Digital transmission over a fading channel Narrowband system (introduction) Wideband TDMA (introduction) Wideband DS-CDMA (introduction) Rake receiver.
EELE 5490, Fall, 2009 Wireless Communications Ali S. Afana Department of Electrical Engineering Class 5 Dec. 4 th, 2009.
A Soft Decision Decoding Scheme for Wireless COFDM with Application to DVB-T Advisor : Yung-An Kao Student : Chi-Ting Wu
NTU Confidential Baseband Transceiver Design for the DVB-Terrestrial Standard Baseband Transceiver Design for the DVB-Terrestrial Standard Advisor : Tzi-Dar.
OFDM Presented by Md. Imdadul Islam.
Physical Layer Fundamentals Physical MAC Physical LLC Data Link Network Transport Session Presentation Application OSI Ref ModelWireless Network Network.
A Novel one-tap frequency domain RLS equalizer combined with Viterbi decoder using channel state information in OFDM systems Advisor: Yung-an Kao Student:
Wireless Communication Technologies 1 Phase noise A practical oscillator does not produce a carrier at exactly one frequency, but rather a carrier that.
Performance analysis of channel estimation and adaptive equalization in slow fading channel Chen Zhifeng Electrical and Computer Engineering University.
林宏穎: OFDM Introduction
Adaphed from Rappaport’s Chapter 5
Geometric Representation of Modulation Signals
Doppler Spread Estimation in Frequency Selective Rayleigh Channels for OFDM Systems Athanasios Doukas, Grigorios Kalivas University of Patras Department.
A Novel Method of Carrier Frequency Offset Estimation for OFDM Systems -Mingqi Li and Wenjun Zhang IEEE Transactions on Consumer 966 Electronics, Vol.
Introduction to Digital Communication
Combined Linear & Constant Envelope Modulation
1 Orthogonal Frequency- Division Multiplexing (OFDM) Used in DSL, WLAN, DAB, WIMAX, 4G.
Chapter : Digital Modulation 4.2 : Digital Transmission
Constellation Diagram
A Simple Transmit Diversity Technique for Wireless Communications -M
PAPR Reduction Method for OFDM Systems without Side Information
S , Postgraduate Course in Radio Communications
Introduction to OFDM and Cyclic prefix
8.15 Noncoherent orthogonal Modulation(1) Noncoherent orthogonal modulation –If two signal is orthogonal and have the same energy during interval T, carrier.
CHAPTER 4. OUTLINES 1. Digital Modulation Introduction Information capacity, Bits, Bit Rate, Baud, M- ary encoding ASK, FSK, PSK, QPSK, QAM 2. Digital.
UNIT-IV PASSBAND TRANSMISSION MODEL
Digital transmission over a fading channel
Hui Ji, Gheorghe Zaharia and Jean-François Hélard
Klaus Witrisal Signal Processing and Speech Communication Lab
Channel Estimation 黃偉傑.
Channel Estimation in OFDM Systems
EEC4113 Data Communication & Multimedia System Chapter 3: Broadband Encoding by Muhazam Mustapha, October 2011.
UWB Receiver Algorithm
Month Year doc.: IEEE yy/xxxxr0 January 2008
Channel Estimation in OFDM Systems
Presentation transcript:

Wireless Communication Technologies 1 Outline Introduction OFDM Basics Performance sensitivity for imperfect circuit Timing and Frequency Synchronization Example Coherent Detection and Channel Estimation The Peak Power Problem Summary References Problems 2.5.5

Wireless Communication Technologies 2 Synchronization In an OFDM link, the data bits are modulated on the subcarriers by some form of PSK or QAM. To estimate the bits at the receiver, knowledge is required about the reference phase and amplitude of the constellation on each subcarrier. In general, the constellation of each subcarrier shows a random phase shift and amplitude change, caused by CFO, timing error, and frequency selective fading. To copy with these unknown phase and amplitude variations, two different approaches exist

Wireless Communication Technologies 3 Detection The first one is coherent detection, which uses estimates of the reference amplitudes and phases to determine the best possible decision boundaries for the constellation of each subcarrier. The second approach is differential detection, which does not use absolute reference values, but only looks at the phase and/or amplitude differences between two QAM values. Differential detection can be done both in the time domain or in the frequency domain. In the time domain, each subcarrier is compared with the subcarrier of the previous OFDM symbol. In the frequency domain, each subcarrier is compared with the adjacent subcarrier within the same OFDM symbol. In this section, we only introduce the first one: coherent detection

Wireless Communication Technologies 4 Coherent Detection Fig. shows a block diagram of a coherent OFDM receiver. For each symbol, the FFT output contains N QAM values. These values contain random phase shifts and amplitude variations caused by the channel response, local oscillator drift, and timing offset. The task of the channel estimation block is to learn the reference phases and amplitudes for all subcarriers

Wireless Communication Technologies 5 Two-dimensional channel estimators In general, radio channels are fading both in time and in frequency. Hence, a channel estimator has to estimate time- varying amplitudes and phases of all subcarriers. An approach called two-dimensional channel estimator that estimates the reference values based on a few known pilot values. This concept is demonstrated in Fig., which shows a block of 9 OFDM symbols with 16 subcarriers. The blue subcarrier values are known pilots. Based on these pilots, all other reference values can be estimated by performing a two-dimensional interpolation

Wireless Communication Technologies 6 Two-dimensional channel estimators To be able to interpolate the channel estimates both in time and frequency from the available pilots, the pilot spacing has to fulfill the Nyquist sampling theorem. The theorem states that the sampling interval must be smaller than the inverse of the double-sided bandwidth of the sampled signal. This means that there exist both a minimum subcarrier spacing and a minimum symbol spacing between pilots. By choosing the pilot spacing much smaller than these minimum requirements, a good channel estimation can be made with a relatively easy algorism

Wireless Communication Technologies 7 Two-dimensional channel estimators However, the more pilots are used, the smaller the effective SNR becomes that is available for data symbols. Hence, the pilot density is a tradeoff between channel estimation performance and SNR loss. To determine the minimum pilot spacing in time and frequency, we need to find the bandwidth of the channel variation in time and frequency. These bandwidths are equal to the Doppler spread in the time domain and the maximum delay spread in the frequency domain

Wireless Communication Technologies 8 Two-dimensional channel estimators Hence, the requirements for the pilot spacings in time and frequency, and, are Assume the available pilot values are arranged in a vector and the channel values that have to be estimated from are in a vector. It is assumed that any known modulation of the pilots is removed before the estimation. The channel estimation problem is now to find the channel estimates as a linear combination of the pilot estimates

Wireless Communication Technologies 9 Two-dimensional channel estimators The minimum mean square error estimate for this problem is given by [1] where is the cross-covariance matrix between and the noisy pilot estimates, given by is the auto-covariance matrix of the pilot estimates: 2.5.5

Wireless Communication Technologies 10 Two-dimensional channel estimators Assuming the pilots all have the same power, which is the case if all pilots are for instance known QPSK symbols, then the pilots’ auto-covariance matrix can be rewritten as where SNR is the signal-to-noise ratio per pilot and is the autocovariance matrix of the noiseless pilots. With this, the channel estimates can be written as This equation basically gives the desired channel estimates as the multiplication of an interpolation matrix with the pilot estimates

Wireless Communication Technologies 11 Two-dimensional channel estimators The elements covariance matrices and can be calculated as follows. Both matrices contain correlation values between subcarrier values for different time and frequency spacings. If k and l are the subcarrier number and OFDM symbol number, respectively, the correlation values are given by where and are the correlation functions in time and frequency, respectively

Wireless Communication Technologies 12 Two-dimensional channel estimators For an exponentially decaying multipath power delay profile, is given by where 1/T is the subcarrier spacing, which is the inverse of the FFT interval T

Wireless Communication Technologies 13 Two-dimensional channel estimators For a time-fading signal with a maximum Doppler frequency and a Jakes spectrum, the time correlation function is given as where is the zeroth order Bessel function of the first kind and is the OFDM symbol duration, which is the FFT interval T plus the guard time

Wireless Communication Technologies 14 Special training symbols The channel estimation technique discussed in the above section were designed to estimate a channel that varied both in time and frequency. This technique is suitable for continuous transmission system such as DAB or DVB. However, it is not suited for packet-type communications for two reasons. First, in many packet transmission systems, such as WLAN, the packet length is short enough to assume a constant channel during the length of the packet. This means there is no need to estimate time fading, which greatly simplifiers the channel estimation problem

Wireless Communication Technologies 15 Special training symbols Second, using pilots scattered over several OFDM data symbols introduces a delay of several symbols before the first channel estimates can be calculated. Such a delay is undesirable in packet transmission like in an IEEE WLAN, which requires an acknowledgement to be sent after each packet transmission. These delays decrease the effective throughput of the system. Another disadvantage is that the receiver needs to buffer several OFDM symbols, thereby requiring extra hardware

Wireless Communication Technologies 16 Special training symbols For the channel estimation in packet transmission systems, the appropriate approach is using a preamble consisting of one or more known OFDM symbols. This approach is sketched in Fig.. The packet starts with two OFDM symbols for which all data values are known. These training symbols can be used to obtain channel estimates, as well as a frequency offset estimate

Wireless Communication Technologies 17 Special training symbols After the first two training symbols, Fig. shows two pilot subcarriers within the data symbols. These pilots are not meant for channel estimation, but for tracking the remaining frequency offset after the initial training. Because this frequency offset affects all subcarriers in a similar way, there is no need to have many pilots with a small frequency spacing as in the case of channel estimation. The choice of the number of training symbols is a tradeoff between a short training time and a good channel estimation performance. Using two training symbols is a reasonable choice, because it gives a 3-dB-lower noise level in the channel estimates, and is convenient to estimate the frequency offset by comparing the phase shift of the two identical symbols