D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.

Slides:



Advertisements
Similar presentations
Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Advertisements

Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Klaus Peters - GSI Future - Physics with Antiprotons
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.
Russian Contribution to PANDA Project (Part I) Dmitry Morozov, IHEP (Protvino) 1st FRRC International Seminar Moscow, ITEP June
Hybrids and Glueballs in the light of antiproton reactions pBar Workshop GSI, Klaus Peters Ruhr-Universität Bochum.
PANDA Ulrich Wiedner, FAIR PAC meeting, March 14, 2005.
Physics with the PANDA Detector at GSI
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Klaus Peters Ruhr-Universität Bochum GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003 Exotic
Journée Thématique IPN Orsay, 2004 PANDA, a new detector for hadronic physics at GSI (FAIR) Carsten Schwarz, GSI ● The FAIR facility  HESR Storage ring.
Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.
Antiproton Requirements for Klaus Peters KPIII/HPI, GSI Darmstadt IKF, JWGU Frankfurt p-Workshop, GSI, Darmstadt Dec 3, 2007.
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
The PANDA experiment at FAIR Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara representing the PANDA collaboration Charm 2007 Cornell University,
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Physics with open charm Andrey Sokolov IKP I FZ Jülich.
1May 27, 2002Klaus Peters - GSI Future - Physics with Antiprotons.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.
Working Group 5 Summary David Christian Fermilab.
D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
Hadron Physics QCD: are we satisfied with it? Antiproton’s potentiality The PANDA enterprise 1 Paola Gianotti.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
QCD Exotics and Charmonium Klaus Peters Ruhr-University Bochum 2nd Workshop "Challenges and Opportunities at the New International Accelerator Facility.
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
The PANDA detector at the future FAIR laboratory Klaus Föhl on behalf of the PANDA collaboration 12 July 2007 SPIN-Praha-2007 and Edinburgh 8 August 2007.
Charm Klaus Peters Ruhr-Universität Bochum and GSI Darmstadt Beijing, Jan 14, 2004.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Workshop JINR/BMBF18.Jan.05, H.O. PANDA at FAIR Facility for Antiproton and Ion Research Herbert Orth GSI Darmstadt.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
Physics with open charm mesons at
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
Physics with the  PANDA Detector at GSI Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Riunione WG Fisica Adronica e dello Spin Roma, 7.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
V. Mochalov (IHEP, Protvino) on behalf of the PANDA collaboration PANDA PHYSICS WITH THE USE OF ANTIPROTON BEAM.
Korea-EU Alice 2004 Su Houng Lee Hungchong Kim, Taesoo Song, Yongjae Park, Yongshin Kwon (Osaka), Youngsoo Son, Kyungchul Han, Kyungil Kim Nuclear and.
The DIRC projects of the PANDA experiment at FAIR
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
June 25, 2016 Mitglied der Helmholtz-Gemeinschaft The PANDA Experiment at FAIR XLIX International Winter Meeting on Nuclear Physics, Bormio 2011 | Tobias.
PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.
Nuclear Physics -- Today and Tomorrow From the infinitely strong –
Recent results on light hadron spectroscopy at BES
Plans for nucleon structure studies at PANDA
PANDA and Charmonium Prospects at FAIR
Physics Opportunities with heavy quark system at FAIR
Presentation transcript:

D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h 1c (1 1 P 1 ) D*D* ψ(3 3 S 1 ) ψ(2 3 S 1 ) χ c0 (2 3 P 0 ) χ c1 (2 3 P 1 ) χ c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (3 1 S 0 ) PANDA and Charmonium Prospects at FAIR Klaus Peters, GSI and Ruhr-University Bochum Beijing, October 15, 2004 talk given at the 3rd Workshop on Quarkonium

2K. Peters - Panda and Charmonium Prospects at FAIR Overview FAIR Project Antiproton Project Storage Ring Physics at Panda Panda Experiment Other Experiments Where do we stand?

3K. Peters - Panda and Charmonium Prospects at FAIR Facility for Antiproton and Ion Research

4K. Peters - Panda and Charmonium Prospects at FAIR Facility for Antiproton and Ion Research Existing GSI Facilities Hadron Physics Plasma Physics Condensed Baryonic Matter Atomic Physics Rare Isotope Beams

5K. Peters - Panda and Charmonium Prospects at FAIR Facility for Antiproton and Ion Research Panda

6K. Peters - Panda and Charmonium Prospects at FAIR The Antiproton Facility - HESR

7K. Peters - Panda and Charmonium Prospects at FAIR The Antiproton Facility - HESR Antiproton production similar to CERN HESR = High Energy Storage Ring Production rate 10 7 /s P beam = GeV/c N stored = 5 x p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x cm -2 s -1 δp/p ~ (stochastic cooling) High resolution mode δp/p ~ (electron cooling) Luminosity = cm -2 s -1

8K. Peters - Panda and Charmonium Prospects at FAIR QCD of bound states: Approach Increase precision measure static properties of well known states Increase the database of decays search for unusual decay modes to gain information Excite additional modes search for gluonic and radial excitations of hadrons search for gluonic excitation of the strong vacuum Put the hadrons to the limits put the hadrons in vacuum with different baryon density

9K. Peters - Panda and Charmonium Prospects at FAIR Panda Participating Institutes more than 300 physicists (48 institutes) from 15 countries: U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen U Helsinki IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk LAL Orsay U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia IMEP Vienna SINS Warsaw U Warsaw Spokesperson: Ulrich Wiedner

10K. Peters - Panda and Charmonium Prospects at FAIR Panda Physics Overview Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei Hypernuclei Many further options Open charm decays Wide angle compton scattering Baryon-Antibaryon production CP-Violation (Λ,D)

11K. Peters - Panda and Charmonium Prospects at FAIR MeV3510 CBall ev./2 MeV 100 E CM Charmonium Physics e + e - interactions: Only 1 -- states are formed Other states only by secondary decays moderate mass resolution pp reactions: All states directly formed very good mass resolution CBall E E 835 ev./pb  c1 CBall, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000)

12K. Peters - Panda and Charmonium Prospects at FAIR E CM Resonance Scan Measured Rate Beam Profile Resonance Cross Section small and well controlled beam momentum spread p/p is extremely important

13K. Peters - Panda and Charmonium Prospects at FAIR Proton-Antiproton Annihilation Productionall J PC available Formationonly selected J PC p p recoil p p

14K. Peters - Panda and Charmonium Prospects at FAIR p p H Formation nngnng Proton-Antiproton Annihilation Gluon rich process creates gluonic excitation directly cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production even at low momenta large exotic content has been proven G M p p G p p Productionall J PC available only selected J PC H p p ssg/ccg M p p H nngnng M H p p

15K. Peters - Panda and Charmonium Prospects at FAIR Charmonium Physics with pp Expect 1-2 fb -1 (like CLEO-C) pp (>5.5 GeV/c) J/ψ10 7 /d pp (>5.5 GeV/c) χ c2 (J/ψγ10 5 /d pp (>5.5 GeV/c) η c ´(10 4 /d| rec. ? Comparison of to E GeV/cmaximum mom. instead of 9 GeV/c 10x higherLuminosity than achieved before charged tracksdetector with magnetic field 10x smallerδp/p stable conditionsdedicated high energy storage ring

16K. Peters - Panda and Charmonium Prospects at FAIR   Charmed Hybrids LQCD: gluonic excitations of the quark-antiquark-potential may lead to bound states -potential for one-gluon exchange -potential from excited gluon flux m Hcc ~ GeV/c 2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed   important and r Breakup R/r 0 V( R )/GeV J/ψ χcχc ψ‘ψ‘ HccHcc D

17K. Peters - Panda and Charmonium Prospects at FAIR LQCD ccg 1 -+ vs. cc 1 -- (J/ψ) 1 -+ m(ccg)ModelGroupReference 4390±80±200 isotropicMILC97PRD56(1997) ±150 isotropicMILC99NPB93Supp(1999) isotropicJKM99PRL82(1999) ±37±99 anisotropicZSU02hep-lat/ (1 -+,1 -- ) m(ccg)- m(cc) 1340±80±200 isotropicMILC97PRD56(1997) ±150 isotropicMILC99NPB93Supp(1999) ±130 anisotropicCP-PACS99PRL82(1999) isotropicJKM99PRL82(1999) ±37±99 anisotropicZSU02hep-lat/

18K. Peters - Panda and Charmonium Prospects at FAIR Charmed Hybrid Level Scheme 1 -- (0,1,2) -+ < 1 ++ (0,1,2) +- JKM, NPB 83 suppl (2000)304 and Manke, PRD57(1998)3829 L-Splitting Δm ~ MeV/c 2 for 1 -+ to 0 +- S-Splitting Page thesis,1995 and PRD 35(1987) (0 -+ ) to 4.52 GeV/c 2 (2 -+ ) consistent w/LQCD JKM, NPB 86 suppl (2000)397, PLB478(2000) DD**

19K. Peters - Panda and Charmonium Prospects at FAIR p Momentum [GeV/c] Mass [GeV/c 2 ] Two body thresholds Molecules Gluonic Excitations qq Mesons Hybrids Hybrids+Recoil Glueball Glueball+Recoil ΛΛ ΣΣ ΞΞ ΛcΛcΣcΣcΞcΞcΛcΛcΣcΣcΞcΞc ΩcΩcΩcΩc ΩΩD DsDsDsDs qqccqqccqq nng,ssgccgccg ggg,gg light qq π,ρ,ω,f 2,K,K *c J/ψ, η c, χ cJ nng,ssgccgccg ggg Accessible Charmed Hadrons at GSI Other exotics with identical decay channels  same region conventional charmonium exotic charmonium

20K. Peters - Panda and Charmonium Prospects at FAIR Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0 +- ) = 4140 (50)(200) MeV m(2 +- ) = 4740 (70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e + e - Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c 2 Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)

21K. Peters - Panda and Charmonium Prospects at FAIR Recent open charm discoveries The D S ± Spectrum |cs> + c.c. was not expected to reveal any surprises Potential model Old measurements New observations 00 11 00 11 22 33 DsDs Ds*Ds* D sJ * (2317) D s1 m [GeV/c 2 ] D0KD0K D*K D sJ (2458) D s2 * JPJP

22K. Peters - Panda and Charmonium Prospects at FAIR D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) ,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K +  +  - D s (1968.5)D s * (2112.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K +  +  -  D s * (2112.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K +  +  -  D s (1968.5)D sJ * (2317.5) ,1 +,2 -,3 +,4 - D s + (D s -  0 )2K - 2K +  +  -  0 D s (1968.5)D sJ (2458.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K +  +  -  0  D s * (2112.4)D sJ * (2317.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  0 )2K - 2K +  +  -  0  D s (1968.5)D s1 (2535.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S  + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K +  +  - ( 0 ) D s * (2112.4)D sJ (2458.5) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K +  +  -  0  D sJ * (2317.5) ,1 -,2 +,3 -,4 + (D s +  0 )(D s -  0 )2K - 2K +  +  - 2 0 D s * (2112.4)D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S  + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K +  +  - ( 0 ) D s (1968.5)D 1 * (2770) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s -  +  - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s (1968.5)D 2 (2870) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D s1 (2535.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D sJ * (2572.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D 0 K - )2K - 2K +  +  - (1-2) 0 D sJ (2458.5) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s * (2112.4)D 2 (2870) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ (2458.5)D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0  D sJ (2458.5)D sJ * (2572.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K +  +  - (1-2) 0  D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0

23K. Peters - Panda and Charmonium Prospects at FAIR D s[J] [*]± Pairproduction in pp Annihilation Associated Pair m/MeV/c 2 JPJP Channel (+cc)Final State D s (1968.5) ,1 -,2 +,3 -,4 + Ds+Ds-Ds+Ds- 2K - 2K +  +  - D s (1968.5)D s * (2112.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s - )2K - 2K +  +  -  D s * (2112.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s - )2K - 2K +  +  -  D s (1968.5)D sJ * (2317.5) ,1 +,2 -,3 +,4 - D s + (D s -  0 )2K - 2K +  +  -  0 D s (1968.5)D sJ (2458.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) 0 )2K - 2K +  +  -  0  D s * (2112.4)D sJ * (2317.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  0 )2K - 2K +  +  -  0  D s (1968.5)D s1 (2535.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D *- K 0 ) 2K - K + K S  + 2 - ( 0 ) D s (1968.5)D sJ * (2572.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D 0 K - ) 2K - 2K +  +  - ( 0 ) D s * (2112.4)D sJ (2458.5) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) 0 )2K - 2K +  +  -  0  D sJ * (2317.5) ,1 -,2 +,3 -,4 + (D s +  0 )(D s -  0 )2K - 2K +  +  - 2 0 D s * (2112.4)D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D *- K 0 )2K - K + K S  + 2 - ( 0 ) D s * (2112.4)D sJ * (2572.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D 0 K - )2K - 2K +  +  - ( 0 ) D s (1968.5)D 1 * (2770) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + (D s -  +  - )2K - 2K + 2 + 2 - D sJ * (2317.5)D sJ (2458.5) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s (1968.5)D 2 (2870) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + D s + ((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D s1 (2535.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0 D s * (2112.4)D 1 * (2770) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )(D s -  +  - )2K - 2K + 2 + 2 -  D sJ * (2317.5)D sJ * (2572.4) ,1 -,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s +  0 )(D 0 K - )2K - 2K +  +  - (1-2) 0 D sJ (2458.5) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )((D s - ) 0 )2K - 2K +  +  - 2 0  D s * (2112.4)D 2 (2870) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D s + )((D s - ) +  - )2K - 2K + 2 + 2 -  D sJ (2458.5)D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D *- K 0 )2K - K + K S  + 2 - (1-2) 0  D sJ (2458.5)D sJ * (2572.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + ((D s + ) 0 )(D 0 K - )2K - 2K +  +  - (1-2) 0  D s1 (2535.4) ,0 +,1-,1 +,2 -,2 +,3 -,3 +,4 -,4 + (D *+ K 0 )(D *- K 0 )K - K + 2K S 2 + 2 - (0-2) 0

24K. Peters - Panda and Charmonium Prospects at FAIR Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK  

25K. Peters - Panda and Charmonium Prospects at FAIR Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width ψ(1D)Γ=2040 MeV ψ(2S)Γ=0,322,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states 3 GeV/c 2 Mass (1 3 D 1 ) (1 3 S 1 ) (2 3 S 1 )  c (1 1 S 0 ) (3 3 S 1 )  c2 (1 3 P 2 )  c1 (1 3 P 1 )  c1 (1 3 P 0 ) 3,74 3,64 3,54 vacuum 1010 2020

26K. Peters - Panda and Charmonium Prospects at FAIR Charmonium mass shift in nuclear matter Quantum numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop ηcηc 0 -+ –8 MeV [1]–5 MeV [4] J/ψ 1 -- –8 MeV [1]-10 MeV [3]–7 MeV [4]< 2 MeV [5]  c0,1,2 0,1, MeV [2]-60 MeV [2] ψ(3686) MeV [2]< 30 MeV [2] ψ(3770) MeV [2]< 30 MeV [2] [1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355 [2] Lee, nucl-th/ [3] Brodsky et al, PRL 64(1990)1011 [4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396 [5] Lee, Ko PRC 67(2003)038202

27K. Peters - Panda and Charmonium Prospects at FAIR Proposed Detector (Overview) High Rates Total σ ~ 55 mb peak > 10 7 int/s Vertexing (σ p,K S,Λ,…) Charged particle ID (e ±,μ ±,π ±,p,…) Magnetic tracking Elm. Calorimetry (γ,π 0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)

28K. Peters - Panda and Charmonium Prospects at FAIR LoI Analysis 1: η c γγ Main background π 0 π 0 and π 0 γ with strong forward peaks only cos θ η ≤0.2, like E760 did Analysis missing mass<0.16 GeV 2 cos θ γγ < Efficiency 10.3 % (full kinematical region) Main Requirement very low energy threshold for backward EMC Signal Background

29K. Peters - Panda and Charmonium Prospects at FAIR LoI Analysis 2: ψ(3770)D* + D* - Peak cross section assume 5 nb Analysis two displaced vertices mass difference technique helicity angle cut 20% efficiency To be done Kalman filter (for improved resolution) Particle (Kaon) ID Background Signal mm

30K. Peters - Panda and Charmonium Prospects at FAIR LoI Analysis 3: μ + μ - from J/ψ produced in p 63 Cu Signal Calculations from A. Sibirtsev at √s=4.05 GeV/c 2 Background UrQMD events Muons come from the decay of light hadrons To be done more statistics fro the UrQMD background, so that the background shape under the J/ψ is clearly visible Signal Background J/ψ

31K. Peters - Panda and Charmonium Prospects at FAIR PAX – Polarized Antiproton Experiment Motivation The transversity distribution is the last leading-twist missing piece of the QCD description of the partonic structure of the nucleon The transversity distribution is directly accessible uniquely via the double transverse spin asymmetry A TT in the Drell-Yan production of lepton pairs and/or via J/ψ production, which might be two orders of magnitude higher Main problems: physics favors large s (>50 GeV 2 ) needs large polarization of beam and target beam polarization technique unverified

32K. Peters - Panda and Charmonium Prospects at FAIR ASSIA – A Study of Spin dependent Interactions with Antiprotons Investigate also Drell-Yan Proposed with 40 GeV/c beam accelerated by SIS300 Target NH 3 10g/cm 2 Luminosity up to 1.5x10 31 cm -2 s -1 as single user Detector first part of COMPASS

33K. Peters - Panda and Charmonium Prospects at FAIR Recommendations of the FAIR QCD PAC Panda The PAC accepts the letter and asks the proponents to go ahead to a Technical Proposal PAX and ASSIA The PAC considers the spin physics of extreme interest and the building of an antiproton polarized beam as a unique possibility for the FAIR project, but does not approve the letters of intent asking for a more detailed study of achievable antiproton polarization and the anticipated physics results.

34K. Peters - Panda and Charmonium Prospects at FAIR FAIR Structure AFI Administrative and Financial Issues STI Scientific and Technical Issues ISC International Steering Committee

35K. Peters - Panda and Charmonium Prospects at FAIR FAIR Phases Contract Development Contract Negotiations Closing MoUPhase I – Governed by MoUPhase I – Governed by contracts AFI STI LoI Proposals/TR s TDR s

36K. Peters - Panda and Charmonium Prospects at FAIR Road Map towards completion assuming proper funding 2004 (Jan. 15th, April 15th) Letters of Intent of experiments and evaluations ASSIA, CBM, FLAIR,PANDA, PAX, DIRAC2, Laser Cool 2005, January 15thTechnical Proposals of all projects (TP) with Milestones (Accelerators, Experiments, …..) followed by Evaluations and Green Light for Construction 2005, MayProject construction starts (dominantly Civil Construction) Technical Design Reports (TDR) (according to Milestones TPs) 2006High Intensity Running at SIS LHC is running, laboratories have free valences for construction of accelerators and detectors 2009 SIS100 Tunnel ready for Installation 2010 SIS100 Commissioning followed by Physics Step-by-Step Commissioning of the full Facility

37K. Peters - Panda and Charmonium Prospects at FAIR Summary and Outlook It’s an amazing time in charm spectroscopy many new states – but no coherent picture Where are gluonic excited charmonia (hybrids) spectrum, widths and decay channels What are the new D sJ states and the X(3872) what are their properties like width and decay channels Interaction with nuclear matter mass shifts, broadening and attenuation Only high precision experiments can finally help to solve the puzzle like GSI