Understanding Coordinates

Slides:



Advertisements
Similar presentations
Models of the Earth sphere, oblate ellipsoid geoid
Advertisements

Working with Map Projections
A guide to coordinate systems, datums, projections, and geoids.
Datum & Coordinate Systems
GPS for Fire Management
Map Projections & Coordinate Systems
Coordinate Systems, Datums and Map Projections D’Arcangelis 11/9/09
CS 128/ES Lecture 3a1 Map projections. CS 128/ES Lecture 3a2 The dilemma Maps are flat, but the Earth is not! Producing a perfect map is like.
Topic 2 – Spatial Representation
CS 128/ES Lecture 2b1 Coordinate systems & projections.
Coordinate Systems, Datums and Map Projections
Map Projections Francisco Olivera, Ph.D., P.E. Srikanth Koka
Projections and Coordinate Systems, Continued
Map projections CS 128/ES Lecture 3a.
Geographic Information Systems
Harry Williams, Cartography
Conversion from Latitude/Longitude to Cartesian Coordinates
Projections and Coordinate Systems
GPS for ICS Using Maps with GPS Using Maps with GPS.
Coordinate systems.
Geographic Information Systems in Water Science Unit 4: Module 1, Lecture 2 – Coordinate Systems and Common GIS data formats.
Map Projections Displaying the earth on 2 dimensional maps
Overview Ellipsoid Spheroid Geoid Datum Projection Coordinate System.
Geodesy, Map Projections and Coordinate Systems
Lecture 4 Understanding Coordinate Systems. Geographic Coordinate systems GCS Spherical Ellipsoidal Curved.
Coordinate Systems Spheroids and spheres. Datums. Coordinate systems.
The graticule is made up of vertical lines, called lines of longitude, and horizontal lines, called lines of latitude. Because the earth is spherical,
Geographic Information Systems Coordinate Systems.
Basic Coordinate Systems Grid Systems RG 620 May 09, 2013 Institute of Space Technology, Karachi RG 620 May 09, 2013 Institute of Space Technology, Karachi.
Referencing Data to Real Locations Module 3
CORSE '07 Spatial Data Spatial data comes in many forms. So How does a GIS work with the data so that it can put the data in the right place on a map?
Lecture 04 Referencing Data to Real Locations
Harry Williams, Cartography
Amanda Henley GIS Librarian Davis Library Reference September 2006
Cartography: the science of map making
shops/gis/docs/projections.ppt.
Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a.
GEOREFERENCING By Okan Fıstıkoğlu. GEOGRAPHIC COORDINATE SYSTEMS Geographic Coordinate System (GCS) uses a three dimensional spherical surface to define.
Map Projections Francisco Olivera, Ph.D., P.E. Srikanth Koka Department of Civil Engineering Texas A&M University.
Cartography: the science of map making A Round World in Plane Terms.
Coordinate Systems and Projections. Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map.
All maps will provide you with a Arrow indicating both truth North (the precise top axis of the earth’s spheroid) and a magnetic north which indicates.
Map Basics, partII GEOG 370 Christine Erlien, Instructor.
L 5 Map Projections Lecture Map projections are used to transfer or “project” geographical coordinates onto a flat surface.. There are many projections:
Map Projections and Datums Prepared By: Henry Morris.
The Round Earth to Flat Map: Map Projections for Designers SP 240 Cartography Alex Chaucer.
1 Spatial Data Spatial data comes in many forms. So How does a GIS work with the data so that it can put the data in the right place on a map?
Map projections and datums
Map Projections.
Basic Coordinate Systems Grid System RG 620 May 23, 2014 Institute of Space Technology, Karachi Grid System RG 620 May 23, 2014 Institute of Space Technology,
Chapter 3- Coordinate systems A coordinate system is a grid used to identify locations on a page or screen that are equivalent to grid locations on the.
CAD to GIS Data Integration Part 1 Datum, Projection, Coordination Systems Presented by Doug Howe, PLS April 24, 2015.
Review of Projections and Coordinate Systems
Coordinates. Space is important How can we represent this space numerically? 2D and 3D.
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
Czech Technical University in Prague Faculty of Transportation Sciences Department of Transport Telematics Doc. Ing. Pavel Hrubeš, Ph.D. Geographical Information.
Coordinate Systems and Map Projections
Georeferencing Ming-Chun Lee.
Overview Ellipsoid Spheroid Geoid Datum Projection Coordinate System.
COORDINATE SYSTEMS AND MAP PROJECTIONS
Harry Williams, Cartography
A guide to coordinate systems, datums, projections, and geoids.
Maps Base maps Coordinate Systems, Datums, Projections
Datums and Coordinate Systems
Map Projections Displaying the earth on 2 dimensional maps
Lecture 4 Geographic Coordinate System
A guide to coordinate systems, datums, projections, and geoids.
Map Projections Displaying the earth on 2 dimensional maps
Michael L. Dennis, RLS, PE G67940_UC15_Tmplt_4x3_4-15
Presentation transcript:

Understanding Coordinates NJDEP & ESRI: Understanding Map Projections & Coordinate Systems

Department Standards Spheroid GRS80 Datum NAD83 Projection New Jersey State Plane (based on Transverse Mercator) Units Feet

Parameters for Mapping A mathematical model of the earth must be selected. Spheroid The mathematical model must be related to real-world features. Datum Real-world features must be projected with minimum distortion from a round earth to a flat map; and given a grid system of coordinates. Projection These factors are part of the process in the creation of each projection.

A mathematical model of the earth must be selected. Spheroid A mathematical model of the earth must be selected. Simplistic - A round ball having a radius big enough to approximate the size of the earth. Reality - Spinning planets bulge at the equator with reciprocal flattening at the poles. e.g. The mathematical model is an ellipsoid not a sphere. The earth is a bit like a tangerine, not perfectly round like a tennis ball.

Different Spheroids

Why use different spheroids? The earth's surface is not perfectly symmetrical, so the semi-major and semi-minor axes that fit one geographical region do not necessarily fit another. Satellite technology has revealed several elliptical deviations. For one thing, the most southerly point on the minor axis (the South Pole) is closer to the major axis (the equator) than is the most northerly point on the minor axis (the North Pole).

The earth's spheroid deviates slightly for different regions of the earth. Ignoring deviations and using the same spheroid for all locations on the earth could lead to errors of several meters, or in extreme cases hundreds of meters, in measurements on a regional scale. GRS80 (North America) Clark 1866 (North America WGS84 (GPS World-wide) International 1924 (Europe) Bessel 1841 (Europe)

A mathematical model must be related to real-world features. Datum A mathematical model must be related to real-world features. A smooth mathematical surface that fits closely to the mean sea level surface throughout the area of interest. The surface to which the ground control measurements are referred. Provides a frame of reference for measuring locations on the surface of the earth.

How do I get a Datum? To determine latitude and longitude, surveyors level their measurements down to a surface called a geoid. The geoid is the shape that the earth would have if all its topography were removed. Or more accurately, the shape the earth would have if every point on the earth's surface had the value of mean sea level.

Geoid vs Spheroid Coordinate systems are applied to the simpler model of a spheroid. The problem is that actual measurements of location conform to the geoid surface and have to be mathematically recalculated to positions on the spheroid. This process changes the measured positions of many point. Sometimes by a few feet, sometimes by hundreds of feet. Different datums use a different orientation of the spheroid to the geoid to determine which parts of the world keep accurate coordinates on the spheroid. For an area of interest, the surface of the spheroid can arbitrarily be made to coincide with the surface of the geoid; for this area, measurements can be accurately transferred from the geoid to the spheroid.

NAD 27 North American Datum - 1927

Earth Centered Datums Satellite technology has made earth-centered datums possible. In an earth-centered datum, the spheroid is no longer aligned with the geoid at a point on the earth's surface. Instead, the center of the spheroid is aligned with the center of mass of the earth—a location that satellite technology has made it possible to determine. In an earth-centered datum, the spheroid and geoid still don't match up perfectly, but the separations are more evenly distributed.

NAD 83 North American Datum - 1983

Changes to the values of any datum parameters can result in changes to coordinate values of points. If you have two different datums, in practive you have two different geographic coordinate systems.

World Geodetic System - 1984 WGS 84 World Geodetic System - 1984 The datum on which GPS coordinates are based and probably the most common datum for GIS data sets with global extent.

Horizontal vs Vertical Datums Horizontal datums are the reference values for a system of location measurements. Vertical datums are the reference values for a system of elevation measurements. The job of a vertical datum is to define where zero elevation is, this is usually done by determining mean sea level, a project that involves measuring tides over a cycle of many years.

Graticules Latitude/Longitude Lines of latitude Longitude lines   N or S of Equator E or W of Prime Meridian Also called parallels and meridians. Latitude lines are parallel, run east and west around the earth's surface, and measure distances north and south of the equator.

Longitude lines run north and south around the earth's surface, intersect at the poles, and measure distances east and west of the prime meridian. Based on 360 degrees. Each degree is divided into 60 minutes and each minute into 60 seconds.

Projection Real-world features must be projected with minimum distortion from a round earth to a flat map; and given a grid system of coordinates. You cannot flatten out features on an ellipsoid without distorting them. (Imagine viewing a tennis ball in its natural round state, now imagine putting a slit into it and trying to spread it out flat. It cannot be done without stretching, tearing, and altering its appearance substantially. A map projection transforms latitude and longitude locations to x,y coordinates.

What is a Projection? If you could project light from a source through the earth's surface onto a two-dimensional surface, you could then trace the shapes of the surface features onto the two-dimensional surface. This two-dimensional surface would be the basis for your map.

Why use a Projection? Can only see half the earth’s surface at a time. Unless a globe is very large it will lack detail and accuracy. Harder to represent features on a flat computer screen. Doesn’t fold, roll or transport easily.

Map Projection & Distortion Converting a sphere to a flat surface results in distortion. Shape (conformal) - If a map preserves shape, then feature outlines (like county boundaries) look the same on the map as they do on the earth. Area (equal-area) - If a map preserves area, then the size of a feature on a map is the same relative to its size on the earth. On an equal-area map each county would take up the same percentage of map space that actual county takes up on the earth. Distance (equidistant) - An equidistant map is one that preserves true scale for all straight lines passing through a single, specified point. If a line from a to b on a map is the same distance that it is on the earth, then the map line has true scale. No map has true scale everywhere.

Direction/Azimuth (azimuthal) – An azimuthal projection is one that preserves direction for all straight lines passing through a single, specified point. Direction is measured in degrees of angle from the north. This means that the direction from a to b is the angle between the meridian on which a lies and the great circle arc connecting a to b. If the azimuth value from a to b is the same on a map as on the earth, then the map preserves direction from a to b. No map has true direction everywhere.

Imagine capturing the world in a net Imagine capturing the world in a net. The net divides the larger earth into sections, all contained in squares of the same size. Suddenly order is imposed on chaos. Finally we have the means to describe a location as so many squares to the left, so many to the right, so many up, or so many down, and at last we have its number. Watts, 1966

Planar Coordinate Systems Coordinate systems identify locations by making measurements on a framework of intersecting lines that resemble a net. On a map, the lines are straight and the measurements are made in terms of distance. On a round surface (like the earth) the lines become circles and the measurements are made in terms of angle.

Any projected data that you add to ArcMap, or that you project within ArcMap, is associated with a projected coordinate system (PCS) in addition to its underlying Geographic Coordinate System (GCS).

Cartesian Coordinate System Planar coordinate systems are based on Cartesian coordinates.

The origin of the coordinate system is made to coincide with the intersection of the central meridian and central parallel of the map. But this conflicts with the desire to keep all their map coordinates positive (within the first quadrant) and unique numbers. This conflict can be resolved with false easting and false northing. Adding a number to the Y axis origin (false easting) and another number to the X axis origin (false northing) is equivalent to moving the origin of the system.

The projected coordinate system is a Cartesian coordinate system with an origin, a unit of measure (map unit), and usually a false easting or false northing. The main value of Cartesian coordinates is for making measurements on maps. Before the age of computers formulas for converting latitude and longitude were too cumbersome to be done quickly, but Cartesian coordinates offered a satisfactory solution.

NJ State Plane Coordinates

Universal Transverse Mercator (UTM) A comprehensive system for identifying locations and making measurements over most of the earth's surface. Divide the world into sixty vertical strips, each spanning six degrees of longitude. Apply a custom Transverse Mercator projection to each strip and use false eastings and northings to make all projected coordinates positive. Data that crosses zones is subject to distortion.

State Plane Coordinate System StatePlane NJ FIPS 2900 (Feet).prj Divides the US into 120 sections, referred to as zones. Each zone is assigned a code number that defines the projection parameters for the region. Zones that lie north-south (New Jersey) use the Transverse Mercator projection; zones that lie east-west (Tennessee) use the Lambert Conformal Conic.

Developed in the 1930s by the US Coast and Geodetic Survey to provide a common references system for highway engineering, survey marker location, and other high-precision needs. Goal was to design a conformal (preserve shapes) mapping system for the country with a maximum scale distortion of one part in 10,000, then considered the limit of surveying accuracy. Four times more accurate than UTM.

Common Transformations Latitude/Longitude to State Plane Feet Lat/Long DMS to Lat/Long Decimal Degrees Universal Transverse Mercator (UTM) Zone 18 to NJ State Plane Feet NAD27 to NAD83

Geographic Coordinate System New Jersey State Plane Coordinate System

Decimal Degrees Minutes and seconds are expressed as decimal values. Used to store digital coordinate information. Example coordinate is 37° 36' 30" (DMS) Divide each value by the number of minutes or seconds in a degree: 36 minutes = .60 degrees (36/60) 30 seconds = .00833 degrees (30/3600) 2. Add up the degrees to get the answer: 37° + .60° + .00833° = 37.60833 DD LAT DD = Latd +(Latm/60)+(Lats.s/3600)   LONG DD = -(-Longd+(Longm/60)+(Longs.s/3600))

FREE Software FOR WINDOWS - Coordinate Conversion http://crunch.tec.army.mil/software/corpscon/corpscon.html CORPSCON