Trees CSCI 3333 Data Structures. Acknowledgement  Dr. Bun Yue  Mr. Charles Moen  Dr. Wei Ding  Ms. Krishani Abeysekera  Dr. Michael Goodrich  Dr.

Slides:



Advertisements
Similar presentations
Trees and Binary Trees Become Rich Force Others to be Poor Rob Banks
Advertisements

Trees1 More on Trees University Fac. of Sci. & Eng. Bus. School Law School CS Dept. EE Dept. Math. Dept.
Data Structures Lecture 6 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Trees Briana B. Morrison Adapted from Alan Eugenio.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Elementary Data Structures
© 2004 Goodrich, Tamassia Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
© 2004 Goodrich, Tamassia Priority Queues1 Heaps: Tree-based Implementation of a Priority Queue.
© 2004 Goodrich, Tamassia Trees1 Chapter 7 Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
Trees1 Recursion Recursion is a concept of defining a method that makes a call to itself.
Chapter 7: Trees Objectives:
© 2004 Goodrich, Tamassia Trees1 Lecture 04 Trees Topics Trees Binary Trees Binary Search trees.
Elementary Data Structures Stacks, Queues, & Lists Amortized analysis Trees.
1 Chapter 7 Trees. 2 What is a Tree In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child.
© 2004 Goodrich, Tamassia Trees1 this is a tree. © 2004 Goodrich, Tamassia Trees2 What is a Tree? In computer science, a tree is an abstract model of.
Trees COMP53 Oct 31, What is a Tree? A tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child relation.
Trees1 Part-C Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
CSC401 – Analysis of Algorithms Lecture Notes 4 Trees and Priority Queues Objectives: General Trees and ADT Properties of Trees Tree Traversals Binary.
General Trees. Tree Traversal Algorithms. Binary Trees. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Trees Chapter 8.
Trees.
Make Money Fast! Stock Fraud Apply shortcuts Bank Robbery Just For Laughs Trees This one is cool eITnotes.com For more notes and topics visit:
Chapter 7:Trees Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided with Data Structures.
Saturday, 04 Apr 2010 University of Palestine Computer Science II Trees.
Trees. What is a Tree? In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent- child relation.
Trees 4/23/2017 Trees.
© 2004 Goodrich, Tamassia Trees1 Text Book: M. T. Goodrich and R. Tamassia, "Data Structures and Algorithms in Java," 4th edition, 2006, Wiley & Sons,
Trees by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data Structures.
1 Binary Trees (7.3) CSE 2011 Winter November 2015.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
Lecture11: Tree I Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2013 Goodrich, Tamassia, Goldwasser.
Trees and Traversal CS 244 On a Tree Fallen Across the Road
Trees trees binary trees traversals of trees template method pattern
CH 7. TREES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY.
24 January Trees CSE 2011 Winter Trees Linear access time of linked lists is prohibitive  Does there exist any simple data structure for.
CH 7 : TREE ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY.
Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery © 2010 Goodrich, Tamassia.
© 2004 Goodrich, Tamassia Trees1 Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery.
TREE Ahsan Ahmed College of Computer and Information Science Majma’ah University 1.
1 COMP9024: Data Structures and Algorithms Week Five: Trees Hui Wu Session 1, 2015
What is a Tree? Formally, we define a tree T as a set of nodes storing elements such that the nodes have a parent-child relationship, that satisfies the.
Elementary Data Structures
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees 5/2/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Trees 5/10/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Searching (and into Trees)
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery Trees
Trees 8/7/2018 2:27 PM Binary Trees © 2010 Goodrich, Tamassia Trees.
Trees 二○一八年八月二十六日 Part-C Trees Trees.
Trees Chuan-Ming Liu Computer Science & Information Engineering
© 2013 Goodrich, Tamassia, Goldwasser
Trees 9/21/2018 9:58 PM Trees this is a tree Trees.
COSC2100: Data Structures and Algorithms
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Elementary Data Structures
Chapter 2: Elementary Data Structures
Week nine-ten: Trees Trees.
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery Trees
Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb CLRS, Section 10.4.
Trees Palestine Gaza West Bank 48 Stolen Land Trees Trees
Lecture 8: Iterators, Trees
Copyright © Aiman Hanna All rights reserved
Lecture 9 CS2013.
CS210- Lecture 9 June 20, 2005 Announcements
Trees Make Money Fast! Stock Fraud Ponzi Scheme Bank Robbery
Presentation transcript:

Trees CSCI 3333 Data Structures

Acknowledgement  Dr. Bun Yue  Mr. Charles Moen  Dr. Wei Ding  Ms. Krishani Abeysekera  Dr. Michael Goodrich  Dr. Richard F. Gilberg

What is a Tree  In computer science, a tree is an abstract model of a hierarchical structure  A tree consists of nodes with a parent-child relation Computers”R”Us SalesR&DManufacturing LaptopsDesktops US International EuropeAsiaCanada

Some Tree Applications  Applications: Organization charts File Folders Repository Programming environments: e.g. drop down menus.

5 Are these trees? Trees

subtree Tree Terminology  Root: node without parent (A)  Internal node: node with at least one child (A, B, C, F)  External node (a.k.a. leaf ): node without children (E, I, J, K, G, H, D)  Ancestors of a node: parent, grandparent, grand- grandparent, etc.  Depth of a node: number of ancestors  Height of a tree: maximum depth of any node (3)  Descendant of a node: child, grandchild, grand-grandchild, etc. A B DC GH E F IJ K  Subtree: tree consisting of a node and its descendants

Example

Recursive Definition of Trees  An empty tree is a tree.  A tree contains a root node connected to 0 or more child sub- trees.

Tree ADT (§ 6.1.2)  We use positions to abstract nodes  Generic methods: integer size() boolean isEmpty() Iterator elements() Iterator positions()  Accessor methods: position root() position parent(p) positionIterator children(p)  Query methods: boolean isInternal(p) boolean isExternal(p) boolean isRoot(p)  Update method: object replace (p, o)  Additional update methods may be defined by data structures implementing the Tree ADT

Tree Traversal  Traversing is the systematic way of accessing, or ‘visiting’ all the nodes in a tree.  Consider the three operations on a binary tree: V: Visit a node L: (Recursively) traverse the left subtree of a node R: (Recursively) traverse the right subtree of a node

Preorder Traversal  A traversal visits the nodes of a tree in a systematic manner  In a preorder traversal, a node is visited before its descendants  Application: print a structured document Make Money Fast! 1. MotivationsReferences2. Methods 2.1 Stock Fraud 2.2 Ponzi Scheme 1.1 Greed1.2 Avidity 2.3 Bank Robbery Algorithm preOrder(v) visit(v) for each child w of v preorder (w)

Postorder Traversal  In a postorder traversal, a node is visited after its descendants  Application: compute space used by files in a directory and its subdirectories Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) cs16/ homeworks/ todo.txt 1K programs/ DDR.java 10K Stocks.java 25K h1c.doc 3K h1nc.doc 2K Robot.java 20K

10/8/2015 2:50 PMTrees13 Binary Tree  A binary tree is a tree with the following properties: Each internal node has two children The children of a node are an ordered pair  We call the children of an internal node left child and right child  Alternative recursive definition: a binary tree is either a tree consisting of a single node, or a tree whose root has an ordered pair of children, each of which is a binary tree Applications: arithmetic expressions decision processes searching A B C F G D E H I

10/8/2015 2:50 PMTrees14 Decision Tree  Binary tree associated with a decision process internal nodes: questions with yes/no answer external nodes: decisions  Example: dining decision Want a fast meal? How about coffee?On expense account? StarbucksSpike’sAl FornoCafé Paragon Yes No YesNoYesNo

10/8/2015 2:50 PMTrees15 Properties of Binary Trees  Notation n number of nodes e number of external nodes i number of internal nodes h height Properties: e  i  1 n  2e  1 h  i h  (n  1)  2 e  2 h h  log 2 e h  log 2 (n  1)  1

10/8/2015 2:50 PMTrees16 BinaryTree ADT  The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT  Additional methods: position leftChild(p) position rightChild(p) position sibling(p)  Update methods may be defined by data structures implementing the BinaryTree ADT

10/8/2015 2:50 PMTrees17 Inorder Traversal  In an inorder traversal a node is visited after its left subtree and before its right subtree  Application: draw a binary tree x(v) = inorder rank of v y(v) = depth of v Algorithm inOrder(v) if isInternal (v) inOrder (leftChild (v)) visit(v) if isInternal (v) inOrder (rightChild (v))

Expression Notation  There are three common notations for expressions: Prefix: operator come before operands. Postfix: operator come after operands. Infix:  Binary operator come between operands.  Unary operator come before the operand.

Examples  Infix: (a+b)*(c-d/f/(g+h)) Used by human being.  Prefix: *+ab-c//df+gh E.g. functional language such as Lisp: Lisp: (* (+ a b) (- c (/ d (/ f (+ g h)))))  Postfix: ab+cdf/gh+/-* E.g. Postfix calculator

Expression Trees  An expression tree can be used to represent an expression. Operator: root Operands: child sub-trees Variable and constants: leaf nodes.

Traversals of Expression Trees  Preorder traversal => prefix notation.  Postorder traversal => postfix notation.  Inorder traversal with parenthesis added => infix notation.

10/8/2015 2:50 PMTrees22 Print Arithmetic Expressions  Specialization of an inorder traversal print operand or operator when visiting node print “(“ before traversing left subtree print “)“ after traversing right subtree Algorithm printExpression(v) if isInternal (v) print( “(’’ ) inOrder (leftChild (v)) print(v.element ()) if isInternal (v) inOrder (rightChild (v)) print ( “)’’ )    2 a1 3b ((2  ( a  1))  (3 b))

10/8/2015 2:50 PMTrees23  Data Structure for Trees  A node is represented by an object storing Element Parent node Sequence of children nodes  Node objects implement the Position ADT B D A CE F B  ADF  C  E

10/8/2015 2:50 PMTrees24 Data Structure for Binary Trees  A node is represented by an object storing Element Parent node Left child node Right child node  Node objects implement the Position ADT B D A CE   BADCE 

Questions and Comments?