The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept.

Slides:



Advertisements
Similar presentations
The CBM experiment - exploring the QCD phase diagram at high net baryon densities - Claudia Höhne, GSI Darmstadt CBM collaboration The CBM experiment physics.
Advertisements

The Compressed Baryonic Matter (CBM) experiment at FAIR
The Physics of Dense Nuclear Matter
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Detector requirements  Feasibility studies  Detector R&D  Outlook Peter.
Silicon Tracker for CBM Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Johann M. Heuser, GSI Darmstadt, Germany for the CBM Collaboration
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
INTRODUCTION One of the major experimental challenges of the Compressed Baryonic Matter (CBM) experiment is the measurement of the D-meson hadronic decay.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
Development of a RICH detector for electron identification in CBM Claudia Höhne, GSI Darmstadt CBM collaboration Sixth Workshop on Ring Imaging Cherenkov.
Strange particles and neutron stars - experiments at GSI Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Outline:  A future accelerator for intense beams of.
CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, January 2005.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
Peter Senger Kolkata Feb. 05 Outline:  Facility of Antiproton and Ion Research  Physics motivation for CBM  Feasibility studies  Experiment layout.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany for the CBM Collaboration.
Peter Senger The Compressed Baryonic Matter Experiment at FAIR Critical Point and the Onset of Deconfinement, Florence, July Outline:  The Facility.
The CBM experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment feasibility studies dileptons:
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt for the CBM collaboration 5 th International Conference on Physics and Astrophysics of Quark Gluon Plasma,
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Feasibility studies and Detector R&D  Outlook Peter Senger Seoul, April 21,
Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Measurements of dileptons with the CBM-Experiment at FAIR Claudia Höhne, University Giessen CBM collaboration.
Di-lepton spectroscopy in CBM Claudia Höhne, GSI Darmstadt CBM collaboration.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for.
1 THE MUON DETECTION SYSTEM FOR THE CBM EXPERIMENT AT FAIR/GSI A. Kiseleva Helmholtz International Summer School Dense Matter In Heavy Ion Collisions and.
1 JINR Contribution to the CBM experiment Report at the 5 th Workshop on the Scientific Cooperation Between German Research Centers and JINR, Dubna, January.
Schwerionen- und Hadronenphysik an und Claudia Höhne, GSI Darmstadt KHuK Jahrestagung, 25./ , GSI Darmstadt Einleitung GSIFOPI & HADES FAIRHADES.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  FAIR: future center for nuclear and.
Peter Senger (GSI) The Compressed Baryonic Matter (CBM) experiment at FAIR FAIR Meeting Kiev, March Outline:  Scientific mission  Experimental.
Results from first beam tests for the development of a RICH detector for CBM J. Eschke 1*, C. Höhne 1 for the CBM collaboration 1 GSI, Darmstadt, Germany.
CBM The future of relativistiv heavy-ion physics at GSI V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany Tracing the.
CBM Relativistiv heavy-ion physics at FAIR V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany The QCD phase diagram : From.
The Compressed Baryonic Matter experiment at the future accelerator facility in Darmstadt Claudia Höhne GSI Darmstadt, Germany.
Ring Recognition and Electron Identification in the RICH detector of the CBM Experiment at FAIR Semeon Lebedev GSI, Darmstadt, Germany and LIT JINR, Dubna,
Physics investigations with CBM – and the importance of tracking – Claudia Höhne, Universität Gießen.
Physics with CBM Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables.
CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...
1 Physics of High Baryon Densities - The CBM experiment at FAIR Subhasis Chattopadhyay Variable Energy Cyclotron Centre, Kolkata for the CBM collaboration.
The Compressed Baryonic Matter Experiment at FAIR Physics Program, Challenges and Status.
Feasibility of J/ψ studies by MPD detector Alla Maevskaya, Alexei Kurepin INR RAS Moscow NICA Roundtable Workshop 11 September 2009.
The Compressed Baryonic Matter Experiment at FAIR Outline:  The Facility for Antiproton and Ion Research (FAIR)  Compressed Baryonic Matter: the physics.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
Possible structures of a neutron star Exploring dense nuclear matter The Compressed Baryonic Matter Experiment atom: m nucleus:
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline:  Probing dense baryonic matter  Experimental observables.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  Physics: Exploring the QCD phasediagram.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
XLVII Int. Winter Meeting, Bormio, Jan , 2009 CHARGED PION PRODUCTION IN C+C AND Ar+KCl COLLISIONS MEASURED WITH HADES Pavel Tlustý, NPI Řež for.
J/ψ simulations: background studies and first results using a compact RICH detector Alla Maevskaya INR RAS Moscow CBM Collaboration meeting September 2007.
Physics analysis with KFParticle Iouri Vassiliev CBM Collaboration.
TOF ECAL TRD Iouri Vassiliev , I. Kisel and M. Zyzak
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Multi-Strange Hyperons Triggering at SIS 100
M. Deveaux, S. Amar-Youcef, C. Dritsa, J. Heuser, I. Fröhlich, C
Highlights from HADES Au+Au collisions at 1.23 AGeV
Strangeness Prospects with the CBM Experiment
CBM Relativistiv heavy-ion physics at FAIR
A heavy-ion experiment at the future facility at GSI
I. Vassiliev, V. Akishina, I.Kisel and
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept  feasibility studies  status

Volker FrieseQM 2005, Budapest, August HI collisions at intermediate energies beam energies 10 – 45 AGeV give access to:  highest baryon densities  onset of phase transition (?)  critical point (?)

Volker FrieseQM 2005, Budapest, August Trajectories in the QCD phase diagram V.Toneev et al., nucl-th/ fluid hydro calculation with hadron gas EOS predicts 30 AGeV to hit critical point phase boundary reached already at 10 AGeV

Volker FrieseQM 2005, Budapest, August Indications for onset of deconfinement at low SPS energies NA49 (QM 2004) peak in strange/nonstrange yield ratio plateau of kaon slopes at SPS not satisfactorily explained in hadronic scenarios Hama et al., Braz. J. Phys. 34 (2004) 322 Gazdzicki, Gorenstein, Act. Phys. Polon. B 30 (1999) 2705 can be modeled assuming 1st order phase transition

Volker FrieseQM 2005, Budapest, August Hadrons in dense environment CERES, Phys. Rev. Lett. 91, (2003) enhancement of low-mass dileptons stronger in 40 AGeV than in 158 AGeV even larger effect at lower energies? statistics and resolution must be improved to discriminate different in-medium scenarios

Volker FrieseQM 2005, Budapest, August J/ψ suppression NA50, QM 2005Gazdzicki & Gorenstein, Phys. Rev. Lett. 83 (1999) 4009 anomalous suppression observed at top SPS in J/ψ / DY but J/ψ / h- flat vs centrality (?) onset of suppression at lower energies ?

Volker FrieseQM 2005, Budapest, August Charm near threshold Gorenstein et al J. Phys. G 28 (2002) 2151 predictions of ccbar production differ strongly between production scenarios (pQCD / QGP / hadron gas) strongest differences near threshold experiment should be able to discriminate

Volker FrieseQM 2005, Budapest, August Charm in dense matter Cassing et al, Nucl. Phys. A 691 (2001) 753 Mishra et al, nucl-th/ D meson masses are expected to drop in dense environment should have strong effect on production yield

Volker FrieseQM 2005, Budapest, August Charm in dense matter (ctd.) Mishra et al, nucl-th/ effect of reduced affectiv D mass: strong decay channels open for charmonium states observable in J/ψ yield in dileptons ?

Volker FrieseQM 2005, Budapest, August The physics of CBM in-medium properties of hadrons deconfinement at high ρ B critical point strangeness (K, Λ, Σ, Ξ, Ω) charm (J/ψ, D) flow ρ, ω, φ → e + e - open charm fluctuations ?!

Volker FrieseQM 2005, Budapest, August GSI SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV

Volker FrieseQM 2005, Budapest, August Detector considerations fast detector response and readout radiation hard detectors and electronics efficient online event selection high interaction rates (beam intensity 10 9 /s, high availability) rare observables (Ω, J/ψ, D) STS tracking, displaced vertices ECAL lepton ID photons TOF hadron ID RICH electron ID TRD electron ID

Volker FrieseQM 2005, Budapest, August Baseline detector concept beam magnet STS ( 5 – 100 cm) RICH (1,5 m) TRDs (4,6,8 m) TOF (10 m) ECAL (12 m)

Volker FrieseQM 2005, Budapest, August The Silicon Tracking System vacuum vertexing tra c king pixel detectors strip detectors z = 5,10,(20) cm z = (20),40,60,80,100 cm "minimal setup": 3 pixel stations 4 strip stations momentum resolution < 1 %

Volker FrieseQM 2005, Budapest, August RICH Design requests: electron ID p < 10 GeV/c pion suppression > 100 pion ID p > 4-5 GeV/c mirror: Be glass, r=450 cm two focal planes radiator: γ > 38 (e. g. N 2 ) z (beam) y optical layout rings in focal plane ring radius vs momentum

Volker FrieseQM 2005, Budapest, August TRD serves for e/π separation and tracking position resolution 300 μm count rates up to 150 kHz/cm 2 R&D ongoing for fast gas detectors Readout: MWPC/GEM/Straw tube beam test July 2004, GSI TR-Simulation

Volker FrieseQM 2005, Budapest, August Detector performance: acceptance incl. TOF 1035 AGeV Λ ΞΩ bulk of produced hadrons covered by acceptance

Volker FrieseQM 2005, Budapest, August Detector performance: J/ψ 15 AGeV25 AGeV35 AGeV single electron p t Simulation: J/ψ, D – HSD background – UrQMD momentum resolution 1 % pion suppression 10 4 p t cut 1 GeV/c, S/B ≈ 1 count rate 10 5 /week

Volker FrieseQM 2005, Budapest, August Detector performance: D mesons Simulation: STS only (no PID) with MAPS events Challenge: Implementation of secondary vertex cut in online event selection (reduction ≈ 1000 needed)

Volker FrieseQM 2005, Budapest, August CBM: Status Nov. 2001: FAIR Conceptual Design Report Jul. 2002: FAIR Recommendation by german Wissenschaftsrat Feb. 2003: approved by BMBF Jan. 2004: CBM Letter of Intent Jan. 2005: CBM Technical Status Report Next step: Technical Proposal (ca. 2 years) First beam on target in 2014

Volker FrieseQM 2005, Budapest, August The CBM collaboration Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Romania: NIPNE Bucharest Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna PNPI Gatchina SINP, Moscow State Univ. Spain: Santiago de Compostela Univ. Ukraine: Univ. Kiev Hungaria: KFKI Budapest Eötvös Univ. Budapest Italy: INFN Frascati Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Jagiel. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw Tech. Univ. Portugal: LIP Coimbra