BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester1 OntoGrid OWL Ontology Tutorial Robert Stevens BioHealth Informatics Group Department.

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

Dr. Alexandra I. Cristea Adaptive Hypermedia and The Semantic Web.
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
Dr. Alexandra I. Cristea Web Programming: Semantic Web.
CS570 Artificial Intelligence Semantic Web & Ontology 2
SIG2: Ontology Language Standards WebOnt Briefing Ian Horrocks University of Manchester, UK.
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
Using the Semantic Web to Construct an Ontology- Based Repository for Software Patterns Scott Henninger Computer Science and Engineering University of.
TU Wien – April 24-29, 2006Semantics and Ontologies in GI Services Ontologies for the Semantic Web Michael Lutz Slides based on Co-ode.
1 Introduction to XML. XML eXtensible implies that users define tag content Markup implies it is a coded document Language implies it is a metalanguage.
1 CSIT600f: Introduction to Semantic Web Dickson K.W. Chiu PhD, SMIEEE Text: Antoniou & van Harmelen: A Semantic Web PrimerA Semantic Web Primer Ref: Ivan.
The Semantic Web Week 13 Module Website: Lecture: Knowledge Acquisition / Engineering Practical: Getting to know.
Ontology and Ontology-Based Applications C. Farkas Some of the slides were obtained from presentations of Ian Horrocks.
Tutorial on OWL ISWC, Sanibel Island, Florida, USA 20 th October, 2003 Sean Bechhofer, 1 Ian Horrocks 1 and Peter F. Patel-Schneider 2 1 University of.
How can Computer Science contribute to Research Publishing?
The Semantic Web Week 12 Term 1 Recap Lee McCluskey, room 2/07 Department of Computing And Mathematical Sciences Module Website:
From SHIQ and RDF to OWL: The Making of a Web Ontology Language
CSIT600f: Introduction to Semantic Web
Samad Paydar Web Technology Laboratory Computer Engineering Department Ferdowsi University of Mashhad 1389/11/20 An Introduction to the Semantic Web.
Module 2b: Modeling Information Objects and Relationships IMT530: Organization of Information Resources Winter, 2007 Michael Crandall.
1 DCS861A-2007 Emerging IT II Rinaldo Di Giorgio Andres Nieto Chris Nwosisi Richard Washington March 17, 2007.
1 Semantic Web Mining Presented by: Chittampally Vasanth Raja 10IT05F M.Tech (Information Technology)
Semantic Web Technologies Lecture # 2 Faculty of Computer Science, IBA.
Ontology.
BiodiversityWorld GRID Workshop NeSC, Edinburgh – 30 June and 1 July 2005 Metadata Agents and Semantic Mediation Mikhaila Burgess Cardiff University.
Ian Horrocks and Alan Rector
Knowledge representation
Protege OWL Plugin Short Tutorial. OWL Usage The world wide web is a natural application area of ontologies, because ontologies could be used to describe.
Of 39 lecture 2: ontology - basics. of 39 ontology a branch of metaphysics relating to the nature and relations of being a particular theory about the.
INF 384 C, Spring 2009 Ontologies Knowledge representation to support computer reasoning.
BioHealth Informatics Group Advanced OWL Tutorial 2005 Ontology Engineering in OWL Alan Rector & Jeremy Rogers BioHealth Informatics Group.
Introduction to Semantic Web and Ontologies Hasan TÜRKSOY Compiled, partly based on various online tutorials and presentations, with respect to their authors.
Ming Fang 6/12/2009. Outlines  Classical logics  Introduction to DL  Syntax of DL  Semantics of DL  KR in DL  Reasoning in DL  Applications.
Building an Ontology of Semantic Web Techniques Utilizing RDF Schema and OWL 2.0 in Protégé 4.0 Presented by: Naveed Javed Nimat Umar Syed.
1 Ontology-based Semantic Annotatoin of Process Template for Reuse Yun Lin, Darijus Strasunskas Depart. Of Computer and Information Science Norwegian Univ.
Automating Instance Migration in Response to Ontology Evolution Mark Fischer – Queen’s Juergen Dingel – Queen’s Maged Elaasar – Carleton Steven Shaw –
Semantic web course – Computer Engineering Department – Sharif Univ. of Technology – Fall Semantic Web Towards a Web of Knowledge - Introduction.
Metadata. Generally speaking, metadata are data and information that describe and model data and information For example, a database schema is the metadata.
LOGIC AND ONTOLOGY Both logic and ontology are important areas of philosophy covering large, diverse, and active research projects. These two areas overlap.
Semantic Web - an introduction By Daniel Wu (danielwujr)
©Ferenc Vajda 1 Semantic Grid Ferenc Vajda Computer and Automation Research Institute Hungarian Academy of Sciences.
6.1 © 2010 by Prentice Hall 6 Chapter Foundations of Business Intelligence: Databases and Information Management.
Semantic web course – Computer Engineering Department – Sharif Univ. of Technology – Fall Knowledge Representation Semantic Web - Fall 2005 Computer.
SKOS. Ontologies Metadata –Resources marked-up with descriptions of their content. No good unless everyone speaks the same language; Terminologies –Provide.
Ontology Mapping in Pervasive Computing Environment C.Y. Kong, C.L. Wang, F.C.M. Lau The University of Hong Kong.
Organization of the Lab Three meetings:  today: general introduction, first steps in Protégé OWL  November 19: second part of tutorial  December 3:
Trustworthy Semantic Webs Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #4 Vision for Semantic Web.
Metadata Common Vocabulary a journey from a glossary to an ontology of statistical metadata, and back Sérgio Bacelar
Of 33 lecture 1: introduction. of 33 the semantic web vision today’s web (1) web content – for human consumption (no structural information) people search.
Semantic Web BY: Josh Rachner and Julio Pena. What is the Semantic Web? The semantic web is a part of the world wide web that allows data to be better.
Knowledge Representation. Keywordsquick way for agents to locate potentially useful information Thesaurimore structured approach than keywords, arranging.
Description Logics Dr. Alexandra I. Cristea. Description Logics Description Logics allow formal concept definitions that can be reasoned about to be expressed.
A Portrait of the Semantic Web in Action Jeff Heflin and James Hendler IEEE Intelligent Systems December 6, 2010 Hyewon Lim.
What information can we see… WWW2002 The eleventh international world wide web conference Sheraton waikiki hotel Honolulu, hawaii, USA 7-11 may
© University of Manchester Creative Commons Attribution-NonCommercial 3.0 unported 3.0 license Quality Assurance, Ontology Engineering, and Semantic Interoperability.
Ontologies COMP6028 Semantic Web Technologies Dr Nicholas Gibbins
© University of Manchester Creative Commons Attribution-NonCommercial 3.0 unported 3.0 license Quality Assurance, Ontology Engineering, and Semantic Interoperability.
BioHealth Informatics Group Copyright © 2005 Univ. of Manchester1 A Practical Introduction to Ontologies & OWL Alan Rector.
Knowledge Representation Part I Ontology Jan Pettersen Nytun Knowledge Representation Part I, JPN, UiA1.
1 Representing and Reasoning on XML Documents: A Description Logic Approach D. Calvanese, G. D. Giacomo, M. Lenzerini Presented by Daisy Yutao Guo University.
The Semantic Web By: Maulik Parikh.
COMP6215 Semantic Web Technologies
ece 627 intelligent web: ontology and beyond
Ian Horrocks and Alan Rector
Ontology From Wikipedia, the free encyclopedia
Logic for Artificial Intelligence
Ontology.
ece 720 intelligent web: ontology and beyond
Ontology-Based Approaches to Data Integration
Semantic Markup for Semantic Web Tools:
Presentation transcript:

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester1 OntoGrid OWL Ontology Tutorial Robert Stevens BioHealth Informatics Group Department of Computer Science University of Manchester (including material from Alan Rector’s Semantic Web course )

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester2 Speakers ►Robert Stevens – BioInformatics ►Alan Rector – Medical Informatics ►Sean Bechofer – OntoGrid, COHSE ►Matthew Horridge – CO-ODE ►Nick Drummond – CO-ODE ►Jeremy Rogers - OpenGALEN ►Katy Wolstencroft – PhosphaBase, mygrid

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester3 Overview (day 1) ►Introduction and Motivation ►Motivation and examples apps ►OWL Language Overview ►The Web Ontology Language and constructs ►Workshop – Protégé-OWL 1 ►Constructing a taxonomy and introduction to reasoning ►Informal Modelling ►Issues when designing an ontology ►Knowledge acquisition methodologies

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester4 Overview (day 2) ►Applications ►Architecture and case studies ►Workshop: Protégé-OWL 2 ►Using a reasoner for computing a classification ►Formal Modelling ►Why classify? ►Untangling ►Q&A, Open Discussion ►Feedback

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester5 The Car

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester6 Coche Automobile Voiture 차 汽车 車 The Car Araba

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester7 Hard Work using the Syntactic Web… Find images of Peter Patel-Schneider, Frank van Harmelen and Alan Rector… Rev. Alan M. Gates, Associate Rector of the Church of the Holy Spirit, Lake Forest, Illinois

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester8 Impossible (?) using the Syntactic Web… ►Complex queries involving background knowledge ►Find information about “animals that use sonar but are not either bats or dolphins”, e.g., Barn owl ►Locating information in data repositories ►Travel enquiries ►Prices of goods and services ►Results of human genome experiments ►Finding and using “web services” ►Visualise surface interactions between two proteins ►Delegating complex tasks to web “agents” ►Book me a holiday next weekend somewhere warm, not too far away, and where they speak French or English

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester9 What is the Problem? Consider a typical web page: Markup consists of: rendering information (e.g., font size and colour) Hyper-links to related content Semantic content is accessible to humans but not (easily) to computers…

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester10 What information can we see… WWW2002 The eleventh international world wide web conference Sheraton waikiki hotel Honolulu, hawaii, USA 7-11 may location 5 days learn interact Registered participants coming from australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland, italy, japan, malta, new zealand, the netherlands, norway, singapore, switzerland, the united kingdom, the united states, vietnam, zaire Register now On the 7 th May Honolulu will provide the backdrop of the eleventh international world wide web conference. This prestigious event … Speakers confirmed Tim berners-lee Tim is the well known inventor of the Web, … Ian Foster Ian is the pioneer of the Grid, the next generation internet …

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester11 What information can a machine see…                        

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester12 Solution: XML markup with “meaningful” tags?                      …

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester13 But What About…                     …

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester14 Machine sees…                       

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester15 Need to Add “Semantics” ►External agreement on meaning of annotations ►E.g., Dublin Core ►Agree on the meaning of a set of annotation tags ►Problems with this approach ►Inflexible ►Limited number of things can be expressed ►Use Ontologies to specify meaning of annotations ►Ontologies provide a vocabulary of terms ►New terms can be formed by combining existing ones ►Meaning (semantics) of such terms is formally specified ►Can also specify relationships between terms in multiple ontologies

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester16 a philosophical discipline—a branch of philosophy that deals with the nature and the organisation of reality ►Science of Being (Aristotle, Metaphysics, IV, 1) ►Tries to answer the questions: What characterizes being? Eventually, what is being? Ontology: Origins and History Ontology in Philosophy

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester17 Ontology in Linguistics “Tank“ ReferentForm Stands for Relates to activates Concept [Ogden, Richards, 1923] ?

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester18 ►An ontology is an engineering artifact: ►It is constituted by a specific vocabulary used to describe a certain reality, plus ►a set of explicit assumptions regarding the intended meaning of the vocabulary. ►Thus, an ontology describes a formal specification of a certain domain: ►Shared understanding of a domain of interest ►Frmal and machine manipulable model of a domain of interest “An explicit specification of a conceptualisation” [Gruber93] Ontology in Computer Science

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester19 Structure of an Ontology Ontologies typically have two distinct components: ►Names for important concepts in the domain ►Elephant is a concept whose members are a kind of animal ►Herbivore is a concept whose members are exactly those animals who eat only plants or parts of plants ►Adult_Elephant is a concept whose members are exactly those elephants whose age is greater than 20 years ►Background knowledge/constraints on the domain ►Adult_Elephants weigh at least 2,000 kg ►All Elephants are either African_Elephants or Indian_Elephants ►No individual can be both a Herbivore and a Carnivore

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester20 Ontology Design and Deployment ►Given key role of ontologies in the Semantic Web, it will be essential to provide tools and services to help users: ►Design and maintain high quality ontologies, e.g.: ►Meaningful — all named classes can have instances ►Correct — captured intuitions of domain experts ►Minimally redundant — no unintended synonyms ►Richly axiomatised — (sufficiently) detailed descriptions ►Store (large numbers) of instances of ontology classes, e.g.: Annotations from web pages ►Answer queries over ontology classes and instances, e.g.: ►Find more general/specific classes ►Retrieve annotations/pages matching a given description ►Integrate and align multiple ontologies

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester21 Example Ontology

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester22 ►Objects/Instances/Individuals ►Elements of the domain of discourse ►Equivalent to constants in FOL ►Types/Classes/Concepts ►Sets of objects sharing certain characteristics ►Equivalent to unary predicates in FOL ►Relations/Properties/Roles ►Sets of pairs (tuples) of objects ►Equivalent to binary predicates in FOL ►Such languages are/can be: ►Well understood ►Formally specified ►(Relatively) easy to use ►Amenable to machine processing Many languages use “object oriented” model based on:

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester23 Aside: Set Based Model Theory Many logics (including standard First Order Logic) use a model theory based on Zermelo-Frankel set theory The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often refered as  ) Objects in the world are interpreted as elements of  Classes/concepts (unary predicates) are subsets of  Properties/roles (binary predicates) are subsets of  £  (i.e.,  2 ) Ternary predicates are subsets of  2 etc. The sub-class relationship between classes can be interpreted as set inclusion Doesn’t work for RDF, because in RDF a class (set) can be a member (element) of another class (set) In Z-F set theory, elements of classes are atomic (no structure)

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester24 Why it’s hard (1) ►Clash of intuitions ►Subject Matter Experts motivated by custom & practice ►Prototypes & Generalities ►Logicians motivated by logic & computational tractability ►Definitions and Universals ►Transparency & predictability vs Rigour & Completeness ►Neophytes (you?) caught in the muddled middle

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester25 Why it’s hard (2) ►Conflation of Models ►Meaning: Correctness of Classification & retrieval ►Indexing:Task of discovery, search, or finding ►Use: Task of data entry, decision support, … ►Acquisition: Task of capturing knowledge ►Assuring quality & managing change ►Quality assurance: Criteria for whether it is ‘correct’ ►Evolution Coping with change ►Regression testingControlling changes & maintaining Quality

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester26 Why its hard (3) ►Confusion of terminology and usage ►Religious wars over words and assumptions ►The intersection of ►Linguistics ►Cognitive science ►Software engineering ►Philosophy ►Human Factors ►A jumble of syntaxes

BioHealth Informatics Group Ontology Tutorial, © 2005 Univ. of Manchester27 Vocabulary ►“Class”  “Concept”  “Category”  “Type” ►“Instance”  “Individual” ►“Entity”  “object”, Class or individual ►“Property”  “Slot”  “Relation”  “Relationtype”  “Attribute”  Semantic link type”  “Role” ►but be careful about “role” ►Means “property” in DL-speak ►Means “role played” in most ontologies ►E.g. “doctor_role”, “student role” …