58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) 0 2 4 6 8 10 12 14 Comparison of (p, n) and ( 3 He,t)

Slides:



Advertisements
Similar presentations
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Advertisements

Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
RIKEN Seminar, September 8th, Complete Electric Dipole Response and Neutron Skin in 208 Pb A. Tamii Research Center for Nuclear Physics, Osaka University.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
University of Liverpool
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Beta decay and Structure of Exotic Nuclei near 78 Ni Alexander Lisetskiy NSCL,JINA,MSU.
Nucleon knockout reactions with heavy nuclei Edward Simpson University of Surrey Brighton PRESPEC Meeting 12 th January 2011.
Measurement of 58 Co Gamow-Teller Strength via (t, 3 He) Arthur L. Cole National Superconducting Cyclotron Laboratory, Michigan State University ref: ESA.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
University of Surrey-23/11/2010. Symmetries and Conservation Laws Introduction of Isospin Charge Exchange Reactions Beta Decay Combined Analysis Recent.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI Groningen Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI.
Neutrino-Nucleus Reactions and Nucleosynthesis Toshio Suzuki Nihon University Roles of ν-process in nucleosynthesis 核物理から見た宇宙 New Era of Nuclear Physics.
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Pygmy Dipole Resonance in 64Fe
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
Low-lying states in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka UniversityH. Fujimura, M. Fujiwara, K. Hara, K. Hatanaka,
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
The concept of compound nuclear reaction: a+B  C  d+F The particle transmission coefficients T are usually known from cross sections of inverse reactions.
High-Resolution Spectroscopy in charge- exchange reactions with rare-isotope beams Applications to weak-reaction rates for astrophysics Remco G.T. Zegers.
1 Isospin symmetry. Beta-decay studies of Tz=-1 nuclei at Rising. B. Rubio for the Valencia-Osaka-Surrey-Leuven-Santiago-GSI Istambul-Lund-Legnaro Collaboration.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Adam Maj IFJ PAN Krakow Search for Pigmy Dipole Resonance in 68 Ni RISING experiment in GSI EWON Meeting Prague, May, 2007.
Isospin Mixing And In-beam Study Of 56 Co Non-yrast States At MLL/Miniball. Motivation And First Glance On The Results Of The Experiment Ana Montaner Pizá.
SFB 634 *Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2 Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Nature of Mixed-Symmetry 2 + States in 94 Mo from High-Resolution Electron and Proton Scattering and Line Shape of the First Excited 1/2 + State in 9 Be.
KS group meeting April 2007Transfer reactions at REX-ISOLDE: Status and a physical case to be studied K. U. Leuven One Nucleon Transfer Reactions Around.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Mass Measurements of Short-lived Nuclei at HIRFL-CSR
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Merve DOĞAN İstanbul University
gamma-transmission coefficients are most uncertain values !!!
Search for unbound excited states of proton rich nuclei
High-resolution Studies of Charge Exchange on 47,48Ti in comparison with Shell Model Calculations Ela Ganioğlu Istanbul University E. Ganioglu, Stockholm.
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Isospin Symmetry test on the semimagic 44Cr
Role of Pions in Nuclei and Experimental Characteristics
High resolution study of TZ= +3 → +2 Gamow-Teller transitions in the
Unexpected nonquenching of the isoscalar spin-M1 transitions
Study of the resonance states in 27P by using
Neutrino-Nucleus Reactions and Nucleosynthesis
Presentation transcript:

58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t) 0 o spectra Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., PRC 75 (’07) J. Rapaport et al. NPA (‘83) GTGR

*GT (  ) : Important weak response, simple operator Yoshitaka FUJITA (Osaka Univ.) New Era of Nuclear Physics in the Cosmos RIKEN August 25-26, 2008 Nuclear Weak and EM Response Studied by Intermediate-energy Nuclear Reactions ( 中間エネルギー核反応による原子核弱電磁応答)   -decay : absolute B(GT), but only low-lying states ( -induced reactions: no chance !)  CE reaction : relative B(GT), but highly excited region

*GT (  ) : Important weak response, simple operator *E1 : Important electro-magnetic response  (  ’) [NRF] : up to particle threshold  (g, n) : above particle threshold  inelastic SC. at 0 o : Coulomb Ex. + Nucl. Ex. Yoshitaka FUJITA (Osaka Univ.) New Era of Nuclear Physics in the Cosmos RIKEN August 25-26, 2008 Nuclear Weak and EM Response Studied by Intermediate-energy Nuclear Reactions ( 中間エネルギー核反応による原子核弱電磁応答)   -decay : absolute B(GT), but only low-lying states ( -induced reactions: no chance !)  CE reaction : relative B(GT), but highly excited region

mainly by  &  Langanke & Martinez-Pinedo Rev.Mod.Phys.75(’04)819 (A,Z)=nuclei in the Fe, Ni region  -decay, e-capture, -induced reactions Balantekin & Fuller J.Phys.G 29(’03)2513 Crucial Weak Processes during the Core Collapse Gamow-Teller (GT) transitions

Simulation of  -decay spectrum

Direct Reactions with Light Projectiles Projectile 3 He Target Coulomb Excitation Elastic Scattering Inelastic Scattering Pick-up Stripping Charge-exchange Similarity with  decay! by Berta Rubio |i>  |f>  -int. Ejectile t

 -decay & Nuclear Reaction  GT  -decay tra. str. = B(GT) : reduced GT transition strength (matrix element) 2 *Nuclear (CE) Reaction Cross-section = reaction mechanism x operator x structure =(matrix element) 2 A simple reaction mechanism should be achieved ! we have to go to high incoming energy

 -decay & Nuclear Reaction  GT  -decay strength = B(GT) : reduced GT transition strength (matrix element) 2 *Nuclear (CE) Reaction cross-section = reaction mechanism x operator x structure =(matrix element) 2 A simple reaction mechanism should be achieved ! we have to go to high incoming energy Study of Weak Response of Nuclei by means of Strong Interaction ! using  -decay as a reference

***Derivation of B (GT) strength***

B (GT) derivation

Nucleon-Nucleon Int. : E in dependence at q =0 V  VV VV VV central-type interactions Simple one-step reaction mechanism at intermediate energies! Energy/nucleon Strength Love & Franey PRC 24 (’81) 1073

N.-N. Int. :  & Tensor-  q-dependence  TT largest at q=0 ! larger than others ! Love & Franey PRC 24 (’81) 1073

B (GT) derivation

58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t) 0 o spectra Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., PRC 75 (’07) J. Rapaport et al. NPA (‘83) GTGR

**Connection between  -decay and ( 3 He,t) reaction** by means of Isospin

Nucleon & Coin = Coin back front = Nucleon isospin T=1/2, 3/2, … T z =1/2T z = -1/ Si Al 14 T z = (1/2)N + (-1/2)Z *z-component: conserved

Nuclei & Coin = Coin back front = Nuclei isospin T=1 triplet Mg 14 T z = +1T z = Si 12 T z = Al 13 Symmetry in 1)structure 2)transitions

Transitions in real & isospin space (T=1) Mg Si Al 13 T z =-1 T z = 0 T z =+1

26 Mg Z=12, N=14 26 Al Z=13, N=13 26 Si Z=14, N=12 T=1 symmetry : Structures & Transitions

26 Mg(p, n) 26 Al & 26 Mg( 3 He,t) 26 Al spectra R. Madey et al., PRC 35 (‘87) 2001 Y. Fujita et al., PRC 67 (‘03) Prominent states are GT states and the IAS ! IAS, 0 +

B(GT) values from Symmetry Transitions (A=26) Y. Fujita et al., PRC 67 (‘03)   -decay ( 3 He,t)

26 Mg( 3 He,t) spectra

Relationship: Decay and Width Heisenberg’s Uncertainty Priciple Width  E *if:Decay is Fast, then:Width of a State is Wider ! *if  t = sec   E ~100 keV (particle decay  t = sec   E ~ 1 eV (fast  decay)

Importance of Isospin : in p-decay of 26 Al

26 Mg( 3 He,t) spectra Information on: Excitation Energy Transition Strength Decay Width

B(GT) values from Symmetry Transitions (A=34) normalized Y. Fujita et al., PRC 75 (’07)

High-resolution Experiment -beam matching techniques- ( dispersion matching techniques)

RCNP Ring Cyclotron Good quality 3 He beam (140 MeV/nucleon)

Grand Raiden Spectrometer Large Angle Spectrometer 3 He beam ( 3 He, t) reaction

Beam line WS-course at RCNP T. Wakasa et al., NIM A482 (’02) 79. Dispersion Matching Techniques

Matching Techniques

RCNP, Osaka Univ. Dispersion Matching Techniques were applied!  E=150 keV  E=30 keV

Supernova Cycle

 important Langanke & Martinez-Pinedo Rev.Mod.Phys.75(’04)819 (A,Z)=nuclei in the Cr, Mn, Fe, Co, Ni region pf -shell Nuclei ! Crucial Weak Processes during the Core Collapse Balantekin & Fuller J.Phys.G 29(’03)2513

GT strengths in A=42-58 GT-GR

**Derivation of “absolute” B(GT) values  -decay: T 1/2 and absolute B(GT) values but only for the low-lying states *( 3 He,t) reaction: highly-excited states can be accessed but only the relative B(GT) values Let’s combine these data !

Mirror nuclei 46 Ti 50 Cr 54 Fe 50 Fe 54 Ni 46 Cr ß+ ( 3 He,t) N=Z T=1 Isospin Symmetry in pf-shell Nuclei Ni Fe 28 T z =0 T z =1 T z =-1 Leuven Valencia Surrey Osaka GSI by B. Rubio

Nuclei & Coin = Coin back front = Nuclei isospin T=1 triplet Cr 26 T z = +1T z = Fe 24 T z = Mn 25

Isospin Symmetry Transitions: 50 Cr( 3 He,t)  50 Mn   -decay 50 Fe Q EC =8.152(61) MeV T 1/2 =0.155(11) s (Z,N)=(24,26)(25,25)(26,24) B(GT)=0.60

**Reconstruction of  decay from ( 3 He,t) ---assuming isospin symmetry ---

Simulation of  -decay spectrum relative intensities of  -decay feeding are deduced ! Y. Fujita et al. PRL 95 (2005)

Absolute B(GT) values -via reconstruction of  -decay spectrum-  -decay experiment T 1/2 =0.155(11) s GT tra. to the 0.65 MeV state New value B(GT)=0.50(13) *20% smaller than deduced in the  -decay: 0.60(16) Absolute intensity: B(GT) Y. Fujita et al. PRL 95 (2005) B(F)=N-Z Relative feeding intensity from ( 3 He,t) t i =partial half-life

Mirror nuclei 46 Ti 50 Cr 54 Fe 50 Fe 54 Ni 46 Cr ß+ ( 3 He,t) N=Z T=1 Isospin Symmetry in pf-shell Nuclei Ni Fe 28 T z =0 T z =1 T z =-1 Leuven Valencia Surrey Osaka GSI CNS by B. Rubio

54 Ni  -decay measurement 54 Ni S p =4.35 Q =8.800  + decay g.s. IAS at Louvain la Neuve (ISOL facility) at GSI (FRS facility) T 1/2 =0.115(4) s

Absolute B(GT) values in 54 Ni  -decay -via reconstruction of  -decay spectrum-  -decay exp. at LLN (Belgium) T 1/2 =0.115(4) s New value B(GT)=0.46(8) Absolute intensity: B(GT) B(F)=N-Z Relative feeding intensity from ( 3 He,t) t i =partial half-life B(GT) : 1 st 1 + state at MeV *old  -decay value : 0.68(16) ( assuming no higher Ex states) * 54 Fe(p,n) 54 Co value : 0.74(5)

54 Ni  -decay measurement 54 Ni S p =4.35 Q =8.800  + decay g.s. IAS at Louvain la Neuve (ISOL facility) at GSI (FRS facility) Accurate ratio of  -ray intensity

GSI: RISING set up - active stopper campaign - 3-layors of DSSD active stopper FRS

GSI RISING set up Active Beam Stopper Campaign July-August, 2007

RCNP, Osaka (b) (a) RISING, GSI

RCNP, Osaka RISING, GSI B(GT) ( 3 He,t) B(GT)  -decay Comparison *B(GT) values using T 1/2 =115 ms ( Louvain)

Mirror nuclei 48V48V 52 Mn 56 Co 52 Co 56 Cu 48 Mn ++ ( 3 He,t) N=Z T = 2 Isospin Symmetry in pf-shell Nuclei Ni Cr 28 T z =0 T z =1 T z =-1 52 Ni T z =2 T z =-2 52 Cr 48 Cr 52 Fe 56 Ni 56 Fe 56 Zn 48 Ti 48 Fe by Y. Fujita, B. Rubio How is the T 1/2 value?

Comparison: (p, n) and ( 3 He,t) IAS g.s. 52 Cr(p, n) 52 Mn Ep =120 MeV D. Wang et al., NP A480 (’88) 285

 -decay simulation x R 2 / 2 for IAS (correction of coupling constant) f-factor

 -decay Half-life T 1/2 -via reconstruction of  -decay spectrum- abs. B(GT) distribution from ( 3 He,t) B(F)=N-Z

52 Ni  -decay Half-life T1/2  -decay exp. (C. Dossat et al., NPA 792, 18 ’07 ) T 1/2 = 40.8(2) ms GANIL abs. B(GT) distribution [ 52 Cr( 3 He,t)] Q EC =11.88 MeV [  -decay + IMME (‘06)] B(F)=N-Z Isospin symmetry estimation T 1/2 = 39 (3) ms SM cal. (PRC 57, 2316, ’98) T 1/2 = 50 ms Mass formula (T. Tachibana et al.) T 1/2 = 35 ms Uncertainty of the Q-value should still be considered !

The Layer Structure of Nature (Snake of Uroboros) What are other connections between the world of Nuclear Physics & Astrophysics?

E1 Coulomb Excitation dipole excitation

E1-distribution: Low-lying & GDR Low-lying region: studied by (  ’) [NRF] Higher-Ex region: studied by (  n) Gent data Livermore data 58 Ni( ,  ’) 58 Ni(  n) 68

Livermore data 58 Ni(p, p’), 160 MeV at 0 o Livermore data 58 Ni(  n) 8 (p, p’) & ( , n) IUCF data

26 Mg( ,  ’) FZR NRF data

26 Mg(p, p’) A. Tamii et al.. RCNP

26 Mg(p, p’) & E1 Good proportionality !

E-field: Time dependence E max = z 1 e  Intensity dI(  )/d  | max = (c/2  )(z 1 e  ) 2 (p, p’) 300 MeV  =1.3, z=1 Intensity=1.69(c/2p)e2 ( 3 He, 3 He’) 160 MeV/u g=1.17, z=2 Intensity=5.48(c/2  )e 2

Summary * Weak response of Nuclei was studied by using Strong Int. --Charge Exchange Reaction-- * Isospin Symmetry was introduced. * High resolution of the ( 3 He,t) reaction allowed the comparison of analogous transitions * Absolute B(GT) strengths were derived. * High resolution (p, p’) and/or ( 3 He, 3 He’) allows the study of B(E1) strengths. Collaboration of Experimentalists and Theorists is very important!

High-Resolution Collaborations Bordeaux (France) :  decay GANIL (France) :  decay Gent (Belgium) : ( 3 He, t), (d, 2 He), (  ’), theory GSI, Darmstadt (Germany) :  decay, theory ISOLDE, CERN (Switzerland) :  decay iThemba LABS. (South Africa) : (p, p’), ( 3 He, t) Jyvaskyla (Finland) :  decay Koeln (Germany) :  decay, ( 3 He, t), theory KVI, Groningen (The Netherlands) : (d, 2 He) Leuven (Belgium) :  decay LTH, Lund (Sweden) : theory Osaka University (Japan) : (p, p’), ( 3 He, t), theory Surrey (GB) :  decay TU Darmstadt (Germany) : (e, e’), ( 3 He, t) Valencia (Spain) :  decay Michigan State University (USA) : theory, (t, 3 He) Muenster (Germany) : (d, 2 He), ( 3 He,t) Univ. Tokyo and CNS (Japan) : theory,  decay