2-1 Future value Present value Rates of return Amortization Chapter 2 Time Value of Money.

Slides:



Advertisements
Similar presentations
Compound Interest Suppose you invest $100 in an account that will pay 10% interest per year. How much will be in the account after three years? – Year.
Advertisements

TVM (cont).
Principles of Finance Part 3. Requests for permission to make copies of any part of the work should be mailed to: Thomson/South-Western 5191 Natorp Blvd.
Chapter 3 The Time Value of Money © 2005 Thomson/South-Western.
Chapter 7 The Time Value of Money © 2005 Thomson/South-Western.
Chapter 3 The Time Value of Money © 2005 Thomson/South-Western.
6-1 Copyright (C) 2000 by Harcourt, Inc. All rights reserved. Chapter 6 The Time Value of Money Future Value Present Value Rates of Return Amortization.
9 - 1 Copyright © 1999 by the Foundation of the American College of Healthcare Executives Future and present values Lump sums Annuities Uneven cash flow.
Chapter 4 The Time Value of Money 1. Learning Outcomes Chapter 4  Identify various types of cash flow patterns  Compute the future value and the present.
1 The Time Value of Money Copyright by Diane Scott Docking 2014.
6-1 CHAPTER 5 Time Value of Money  Read Chapter 6 (Ch. 5 in the 4 th edition)  Future value  Present value  Rates of return  Amortization.
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
Chapter 3 The Time Value of Money. 2 Time Value of Money  The most important concept in finance  Used in nearly every financial decision  Business.
1 TIME VALUE OF MONEY FACULTY OF BUSINESS AND ACCOUNTANCY Week 5.
Ch 4. Time Value of Money Goal:
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
GBUS502 Vicentiu Covrig 1 Time value of money (chapter 5)
5.0 Chapter 5 Discounte d Cash Flow Valuation. 5.1 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute.
7 - 1 Copyright © 2002 by Harcourt, Inc.All rights reserved. Future value Present value Rates of return Amortization CHAPTER 7 Time Value of Money.
FIN303 Vicentiu Covrig 1 Time value of money (chapter 5)
Multiple Cash Flows –Future Value Example
F301_CH6-1 We will deal with 3 different rates: i Nom = nominal, or stated, or quoted, rate per year. i Per = periodic rate. EAR= EFF% =. effective annual.
Future Value Present Value Annuities Different compounding Periods Adjusting for frequent compounding Effective Annual Rate (EAR) Chapter
Discounted Cash Flow Valuation.  Be able to compute the future value of multiple cash flows  Be able to compute the present value of multiple cash flows.
TIME VALUE OF MONEY CHAPTER 5.
9 - 1 The financial (monetary) value of any asset (investment) is based on future cash flows. However, the value of a dollar to be received in the future.
© 2003 McGraw-Hill Ryerson Limited 9 9 Chapter The Time Value of Money-Part 2 McGraw-Hill Ryerson©2003 McGraw-Hill Ryerson Limited Based on: Terry Fegarty.
2-1 Future value Present value Rates of return Amortization Chapter 2 Time Value of Money.
Chapter 6 Calculators Calculators Discounted Cash Flow Valuation McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
Future value Present value Rates of return Amortization Time Value of Money.
Using the Financial Calculator
Time Value of Money 2: Analyzing Annuity Cash Flows
Discounted Cash Flow Analysis (Time Value of Money) Future value Present value Rates of return.
Amortized Loans An amortized loan is a loan paid off in equal payments – consequently, the loan payments are an annuity. In an amortized loan:
Future value Present value Annuities TVM is one of the most important concepts in finance: A dollar today is worth more than a dollar in the future. Why.
CHAPTER 5 Time Value of Money (“TVOM”)
McGraw-Hill/Irwin ©2001 The McGraw-Hill Companies All Rights Reserved 5.0 Chapter 5 Discounte d Cash Flow Valuation.
1 Chapter 4 Time Value of Money. 2 Time Value Topics Future value Present value Rates of return Amortization.
6-1 CHAPTER 5 Time Value of Money. 6-2 Time lines Show the timing of cash flows. Tick marks occur at the end of periods, so Time 0 is today; Time 1 is.
Principles of Finance 5e, 9 The Time Value of Money © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to.
Chapter 4 The Time Value of Money. Essentials of Chapter 4 Why is it important to understand and apply time value to money concepts? What is the difference.
2-1 Future value Present value Rates of return Amortization Chapter 2 Time Value of Money.
7 - 1 Copyright © 1999 by The Dryden PressAll rights reserved. Future value Present value Rates of return Amortization CHAPTER 6 Time Value of Money.
2-1 CHAPTER 2 Time Value of Money Future Value Present Value Annuities Rates of Return Amortization.
6-1 Chapter 6 The Time Value of Money Future Value Present Value Rates of Return Amortization.
Discounted Cash Flow Analysis (Time Value of Money) Future value Present value Rates of return.
7 - 1 Copyright © 2002 by Harcourt, Inc.All rights reserved. Future value Present value Rates of return Amortization CHAPTER 7 Time Value of Money.
2.4 Perpetuities and Annuities 2.5 Effective Annual Interest Rate
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization.
6-1 Time Value of Money Future value Present value Annuities Rates of return Amortization.
Present Value Professor XXXXX Course Name / Number.
2 - 1 Future value Present value Rates of return Amortization CHAPTER 2 Time Value of Money.
Time Value of Money Chapter 5  Future Value  Present Value  Annuities  Rates of Return  Amortization.
Introduction to Valuation- The Time Value of Money.
Financial Management: Theory and Practice 14e
Ch. 5: Discounted Cash Flow Valuation
Chapter 5 Time Value of Money.
Chapter 4 Time Value of Money.
Future Value Present Value Annuities Rates of Return Amortization
CHAPTER 6 Time Value of Money
Time Value of Money Future value Present value Rates of return
Chapter 4 Time Value of Money
Chapter 2 Time Value of Money.
CHAPTER 2 Time Value of Money
Chapter 2 Time Value of Money Future value Present value
CHAPTER 7 Time Value of Money
Presentation transcript:

2-1 Future value Present value Rates of return Amortization Chapter 2 Time Value of Money

2-2 Will the FV of a lump sum be larger or smaller if we compound more often,? Why? LARGER! If compounding is more frequent than once a year--for example, semiannually, quarterly, or daily--interest is earned on interest more often.

2-3 Semiannually: FV 6 = $100(1.05) 6 = $ % % Annually: FV 3 = $100(1.10) 3 = $

2-4 Rates of return Nominal rate (i Nom ). Periodic rate (i Per ). Effective annual rate

2-5 Nominal rate (i Nom ) Stated in contracts, and quoted by banks and brokers. Not used in calculations or shown on time lines Periods per year (m) must be given. Examples: 8%; Quarterly 8%, Daily interest (365 days)

2-6 Periodic rate (i Per ) i Per = i Nom /m, where m is number of compounding periods per year. m = 4 for quarterly, 12 for monthly, and 360 or 365 for daily compounding. Used in calculations, shown on time lines. Examples: 8% quarterly: iPer = 8%/4 = 2%. 8% daily (365): iPer = 8%/365 = %.

2-7 We will deal with 3 different rates: i Nom = nominal, or stated, or quoted, rate per year. i Per = periodic rate. EAR= EFF% =. effective annual rate

2-8 FV Formula with Different Compounding Periods (e.g., $100 at a 12% nominal rate with semiannual compounding for 5 years) = $100(1.06) 10 = $ FV = PV1.+ i m n Nom mn       FV = $ S 2x5      

2-9 FV of $100 at a 12% nominal rate for 5 years with different compounding FV(Annual)= $100(1.12) 5 = $ FV(Semiannual)= $100(1.06) 10 =$ FV(Quarterly)= $100(1.03) 20 = $ FV(Monthly)= $100(1.01) 60 = $ FV(Daily)= $100(1+(0.12/365)) (5x365) = $

2-10 Effective Annual Rate (EAR = EFF%) The EAR is the annual rate which causes PV to grow to the same FV as under multi-period compounding Example: Invest $1 for one year at 12%, semiannual: FV = PV(1 + i Nom /m) m FV = $1 (1.06) 2 =  EFF% = 12.36%, because $1 invested for one year at 12% semiannual compounding would grow to the same value as $1 invested for one year at 12.36% annual compounding.

2-11 An investment with monthly payments is different from one with quarterly payments. Must put on EFF% basis to compare rates of return. Use EFF% only for comparisons. Banks say “interest paid daily.” Same as compounded daily.

2-12 How do we find EFF% for a nominal rate of 12%, compounded semiannually? EFF% = - 1 ( 1 + ) i Nom m m = ( 1 + ) = (1.06) = = 12.36%.

2-13 EAR (or EFF%) for a Nominal Rate of of 12% EAR Annual = 12%. EAR Q =( /4) 4 - 1= 12.55%. EAR M =( /12) = 12.68%. EAR D(365) =( /365) = 12.75%.

2-14 Can the effective rate ever be equal to the nominal rate? Yes, but only if annual compounding is used, i.e., if m = 1. If m > 1, EFF% will always be greater than the nominal rate.

2-15 When is each rate used? i Nom :Written into contracts, quoted by banks and brokers. Not used in calculations or shown on time lines.

2-16 i Per :Used in calculations, shown on time lines. If i Nom has annual compounding, then i Per = i Nom /1 = i Nom.

2-17 EAR = EFF%: Used to compare returns on investments with different payments per year.

2-18 Amortization Construct an amortization schedule for a $1,000, 10% annual rate loan with 3 equal payments.

2-19 Step 1: Find the required payments. PMT % -1,000

2-20

2-21 Step 2: Find interest charge for Year 1. INT t = Beg bal t (i) INT 1 = $1,000(0.10) = $100. Step 3: Find repayment of principal in Year 1. Repmt = PMT - INT = $ $100 = $

2-22 Step 4: Find ending balance after Year 1. End bal= Beg bal - Repmt = $1,000 - $ = $ Repeat these steps for Years 2 and 3 to complete the amortization table.

2-23 Interest declines. Tax implications. BEGPRINEND YRBALPMTINTPMTBAL 1$1,000$402$100$302$ TOT1, ,000

2-24 $ Interest Level payments. Interest declines because outstanding balance declines. Lender earns 10% on loan outstanding, which is falling. Principal Payments

2-25 Amortization tables are widely used--for home mortgages, auto loans, business loans, retirement plans, and so on. They are very important! Financial calculators (and spreadsheets) are great for setting up amortization tables.

2-26 On January 1 you deposit $100 in an account that pays a nominal interest rate of %, with daily compounding (365 days). How much will you have on October 1, or after 9 months (273 days)? (Days given.)

2-27 i Per = %/365 = % per day. FV=? % -100 Note: % in calculator, decimal in equation.   FV = $ = $ = $

2-28 What’s the value at the end of Year 3 of the following CF stream if the quoted interest rate is 10%, compounded semiannually? % mos. periods 100

2-29 Payments occur annually, but compounding occurs each 6 months. So we can’t use normal annuity valuation techniques.

2-30 1st Method: Compound Each CF % FVA 3 = $100(1.05) 4 + $100(1.05) 2 + $100 = $

2-31 by following these steps: a. Find the EAR for the quoted rate: 2nd Method: Treat as an Annuity EAR = ( 1 + ) - 1 = 10.25%

2-32 b. Use EAR = 10.25% as the annual rate in your calculator: