Objectives and Vocabulary

Slides:



Advertisements
Similar presentations
4.4 Conics Recognize the equations and graph the four basic conics: parabolas, circles, ellipse, and hyperbolas. Write the equation and find the focus.
Advertisements

Objectives Identify and transform conic functions.
The Ellipse 10.3 Chapter 10 Analytic Geometry 3.4.1
Chapter Ellipses.
Parabolas Warm Up Lesson Presentation Lesson Quiz
C O N I C S E C T I O N S Part 3: The Ellipse.
Ellipses Date: ____________.
Chapter 7 Analyzing Conic Sections
10.4 Ellipses p An ellipse is a set of points such that the distance between that point and two fixed points called Foci remains constant d1 d2.
Objectives Write an equation for a circle.
Section 9.1 The Ellipse. Overview Conic sections are curves that result from the intersection of a right circular cone—think ice cream cone—and a plane—think.
Section 9.1 The Ellipse.
10-3 Ellipses Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
Table of Contents Ellipse - Finding the Equation Recall that the two equations for the ellipse are given by... Horizontal EllipseVertical Ellipse.
Ellipses Unit 7.2. Description Locus of points in a plane such that the sum of the distances from two fixed points, called foci is constant. P Q d 1 +
10-4 Hyperbolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
9.1.1 – Conic Sections; The Ellipse
10-4 Hyperbolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
Chapter Hyperbolas.
Review Day! Hyperbolas, Parabolas, and Conics. What conic is represented by this definition: The set of all points in a plane such that the difference.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
& & & Formulas.
11.3 Ellipses Objective: By the end of the lesson, you should be able to write an equation of an ellipse and sketch its graph.
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Section 2 Chapter Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives The Circle and the Ellipse Find an equation of a circle.
Write the standard equation for a hyperbola.
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
Holt Algebra Ellipses 10-3 Ellipses Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
5.3 Ellipses 1 We define an ellipse as the set of points which are a fixed distance from two points (the foci), i.e. that the sum of the two distances.
Ellipses Topic 7.4. Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Ellipses On to Sec. 8.2a….
Ellipses Topic Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Warm up Write the standard form of the equation: Then find the radius and the coordinates of the center. Graph the equation.
Holt Algebra Ellipses Write the standard equation for an ellipse. Graph an ellipse, and identify its center, vertices, co-vertices, and foci. Objectives.
Ellipse Notes. What is an ellipse? The set of all points, P, in a plane such that the sum of the distances between P and the foci is constant.
Pre-Calc Ellipses Lesson 6.3 If you take a circle---grab hold of a horizontal diameter At the ends and just stretch it out symmetrically, then The result.
Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Conics Lesson 3: Ellipses Mrs. Parziale. Ellipses Equation for Ellipse: Center = (h, k) a = how far to count out horizontally 2a = length of horizontal.
Copyright © 2011 Pearson Education, Inc. The Ellipse and the Circle Section 7.2 The Conic Sections.
Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and F2) called foci is constant.
Accelerated Precalculus Ellipses. One Minute Question Find the diameter of: x 2 + y 2 + 6x - 14y + 9 = 0.
Making graphs and using equations of ellipses. An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
1 st Day Section A circle is a set of points in a plane that are a given distance (radius) from a given point (center). Standard Form: (x – h) 2.
Hyperbolas Objective: graph hyperbolas from standard form.
Splash Screen.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conic Sections College Algebra
10.2 Ellipses.
Ellipses Date: ____________.
• • Graphing and Writing Equations of Ellipses
Day 20 AGENDA: Quiz minutes.
MATH 1330 Section 8.2b.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Ellipse Notes.
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Objectives and Vocabulary
9.4 Graph & Write Equations of Ellipses
Sullivan Algebra and Trigonometry: Section 11.3
10-4 Hyperbolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
distance out from center distance up/down from center
10-3 Ellipses Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
• • Graphing and Writing Equations of Ellipses
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
L10-4 Obj: Students will find equations for ellipses and graph ellipses. Ellipse Definition: Each fixed point F is a focus of an ellipse (plural: foci).
Ellipse.
Hyperbolas 12-4 Warm Up Lesson Presentation Lesson Quiz
Presentation transcript:

Objectives and Vocabulary Write the standard equation for an ellipse. Graph an ellipse, and identify its center, vertices, co-vertices, and foci. ellipse focus of an ellipse major axis minor axis vertices and co-vertices of an ellipse

Notes 1. Graph the ellipse . 2. Write an equation in standard form for each ellipse with the center at the origin. A. Vertex at (0, 5); co-vertex at (1, 0). B. Vertex at (5, 0); focus at (–2, 0). 3. Write an equation of a shifted ellipse with the vertices (2, 5) and (2, -3) and co-Vertices of (4, 1) and (0, 1) 4. A city park in the form of an ellipse is being renovated. The new park will have a length and width double that of the original park. Write the equation for the new park. 2

Example 1 : Graphing Ellipses Graph the ellipse The vertices are (±8, 0) or (8, 0) and (–8, 0), and the co-vertices are (0, ±5,), or (0, 5) and (0, –5).

The standard form of an ellipse centered at (0, 0) depends on whether the major axis is horizontal or vertical.

If you pulled the center of a circle apart into two points, it would stretch the circle into an ellipse. An ellipse is the set of points P(x, y) in a plane such that the sum of the distances from any point P on the ellipse to two fixed points F1 and F2, called the foci (singular: focus), is the constant sum d = PF1 + PF2. This distance d can be represented by the length of a piece of string connecting two pushpins located at the foci. You can use the distance formula to find the constant sum of an ellipse.

Example 2: Graphing Ellipses Graph the ellipse Step 3 The vertices are (–4 ± 7, 3) or (3, 3) and (–11, 3), and the co-vertices are (–4, 3 ± 4), or (–4, 7) and (–4, –1).

Example 3A: Using Standard Form to Write an Equation for an Ellipse Write an equation in standard form for each ellipse with center (0, 0). Vertex at (6, 0); co-vertex at (0, 4) Identify major axis - The vertex is on the x-axis. Step 1 x2 a2 + = 1 y2 b2 x2 36 + = 1 y2 16 Substitute the values into the equation of an ellipse. Step 2

Example 3B: Using Standard Form to Write an Equation for an Ellipse Write an equation in standard form for each ellipse with center (0, 0). Co-vertex at (5, 0); focus at (0, 3) Step 1 Choose the appropriate form of equation. y2 a2 + = 1 x2 52 The vertex is on the y-axis. Step 2 Use the foci to complete equation y2 34 + = 1 x2 25

Notes 1. Graph the ellipse . 2. Write an equation in standard form for each ellipse with the center at the origin. A. Vertex at (0, 5); co-vertex at (1, 0). B. Vertex at (5, 0); focus at (–2, 0). 3. Write an equation of a shifted ellipse with the vertices (2, 5) and (2, -3) and co-Vertices of (4, 1) and (0, 1) 4. A city park in the form of an ellipse is being renovated. The new park will have a length and width double that of the original park. Write the equation for the new park. 9

A. Vertex at (0, 5); co-vertex at (1, 0). Notes 1. Graph the ellipse . 2. Write an equation in standard form for each ellipse with the center at the origin. A. Vertex at (0, 5); co-vertex at (1, 0). B. Vertex at (5, 0); focus at (–2, 0). 3. Write an equation of a shifted ellipse with the vertices (2, 5) and (2, -3) and co-Vertices of (4, 1) and (0, 1)

Notes #4: Engineering Application 4. A city park in the form of an ellipse with equation , measured in meters, is being renovated. The new park will have a length and width double that of the original park. Write the equation for the new park. x2 49 + = 1 y2 25

Step 1: Find the dimensions of the existing park. Length of major axis = 14 Length of minor axis = 10 x2 49 + = 1 y2 25 Step 2: Find the dimensions of the new park. Length of major axis = 28 Length of minor axis = 20 Step 3: Write the equation for the new park. x2 198 + = 1 y2 100

The values a, b, and c are related by the equation c2 = a2 – b2 The values a, b, and c are related by the equation c2 = a2 – b2. Also note that the length of the major axis is 2a, the length of the minor axis is 2b, and a > b.

Ellipses may also be translated so that the center is not the origin.

Ellipses: Extra Info The following power-point slides contain extra examples and information. Reminder: Lesson Objectives Write the standard equation for an ellipse. Graph an ellipse, and identify its center, vertices, co-vertices, and foci. 15

Instead of a single radius, an ellipse has two axes Instead of a single radius, an ellipse has two axes. The longer the axis of an ellipse is the major axis and passes through both foci. The endpoints of the major axis are the vertices of the ellipse. The shorter axis of an ellipse is the minor axis. The endpoints of the minor axis are the co-vertices of the ellipse. The major axis and minor axis are perpendicular and intersect at the center of the ellipse.

Notes #3: Solutions 3. Graph the ellipse .

Vertex at (9, 0); co-vertex at (0, 5) Check It Out! Example 2a Write an equation in standard form for each ellipse with center (0, 0). Vertex at (9, 0); co-vertex at (0, 5) Step 1 Choose the appropriate form of equation. x2 a2 + = 1 y2 b2 The vertex is on the x-axis.

Check It Out! Example 2a Continued Step 2 Identify the values of a and b. a = 9 The vertex (9, 0) gives the value of a. b = 5 The co-vertex (0, 5) gives the value of b. Step 3 Write the equation. x2 81 + = 1 y2 25 Substitute the values into the equation of an ellipse.

Co-vertex at (4, 0); focus at (0, 3) Check It Out! Example 2b Write an equation in standard form for each ellipse with center (0, 0). Co-vertex at (4, 0); focus at (0, 3) Step 1 Choose the appropriate form of equation. y2 a2 + = 1 x2 b2 The vertex is on the y-axis.

Check It Out! Example 2b Continued Step 2 Identify the values of b and c. b = 4 The co-vertex (4, 0) gives the value of b. c = 3 The focus (0, 3) gives the value of c. Step 3 Use the relationship c2 = a2 – b2 to find a2. 32 = a2 – 42 Substitute 3 for c and 4 for b. a2 = 25 Step 4 Write the equation. y2 25 + = 1 x2 16

Check It Out! Example 3b Graph the ellipse. Step 1 Rewrite the equation as Step 2 Identify the values of h, k, a, and b. h = 2 and k = 4, so the center is (2, 4). a = 5 and b = 3; Because 5 > 3, the major axis is horizontal.

Check It Out! Example 3b Continued Graph the ellipse. (2, –1) (7, 4) Step 3 The vertices are (2 ± 5, 4) or (7, 4) and (–3, 4), and the co-vertices are (2, 4 ± 3), or (2, 7) and (2, 1).