Student Paper Finalist TU3B-1

Slides:



Advertisements
Similar presentations
High efficiency Power amplifier design for mm-Wave
Advertisements

Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
The High Voltage/High Power FET (HiVP)
1 A 1.1V 150GHz Amplifier with 8dB Gain and +6dBm Saturated Output Power in Standard Digital 65nm CMOS Using Dummy-Prefilled Microstrip Lines M. Seo 1,
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
Center for Wireless Communications 1 ©Deng, Larson and Gudem, May 16th, 2003 PA Workshop High Efficiency SiGe BiCMOS WCDMA Power Amplifiers With Dynamic.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
Slide 19/3/2002 S. Xie, V. Paidi, R. Coffie, S. Keller, S. Heikman, A. Chini, U. Mishra, S. Long, M. Rodwell Department of Electrical and Computer Engineering,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Electronics Principles & Applications Sixth Edition Chapter 7 More About Small-Signal Amplifiers (student version) ©2003 Glencoe/McGraw-Hill Charles A.
Design of Microwave Power Amplifier with ADS Technische Universität Berlin Fachgebiet Mikrowellentechnik Daniel Gruner, Ahmed Sayed, Ahmed Al Tanany,
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
LECTURE 4. HIGH-EFFICIENCY POWER AMPLIFIER DESIGN
60-GHz PA and LNA in 90-nm RF-CMOS
Low Noise Amplifier. DSB/SC-AM Modulation (Review)
Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell,
48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith,
University of Toronto (TH2B - 01) 65-GHz Doppler Sensor with On-Chip Antenna in 0.18µm SiGe BiCMOS Terry Yao, Lamia Tchoketch-Kebir, Olga Yuryevich, Michael.
PilJae Park 2/23/2007 Slide 1 Transmit/Receive (T/R) Switch Topology Comparison Series-series Topology Series-shunt Topology High impedance block  In.
Microwave Amplifier Design Blog by Ben (Uram) Han and Nemuel Magno Group 14 ENEL 434 – Electronics 2 Assignment
A 77-79GHz Doppler Radar Transceiver in Silicon
McGraw-Hill © 2008 The McGraw-Hill Companies Inc. All rights reserved. Electronics Principles & Applications Seventh Edition Chapter 7 More About Small-Signal.
Microwave Amplifier Design Blog by Ben (Uram) Han and Nemuel Magno Group 14 ENEL 434 – Electronics 2 Assignment
1 姓名 : 李國彰 指導教授 : 林志明老師 A 1v 2.4GHz CMOS POWER AMPLIFIER WITH INTEGRATED DIODE LINEARIZER ( The 2004 IEEE Asia-Pacific Conference on Circuits and Systems,
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Microwave Engineering, 3rd Edition by David M. Pozar
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
Microwave Traveling Wave Amplifiers and Distributed Oscillators ICs in Industry Standard Silicon CMOS Kalyan Bhattacharyya Supervisors: Drs. J. Mukherjee.
A Novel 2.4 GHz CMOS Class-E Power Amplifier with Efficient Power Control for Wireless Communications R. Meshkin, A. Saberkari*, and M. Niaboli Department.
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
Presenter: Chun-Han Hou ( 侯 鈞 瀚)
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
A GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering.
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
RFIC – Atlanta June 15-17, 2008 RMO1C-3 An ultra low power LNA with 15dB gain and 4.4db NF in 90nm CMOS process for 60 GHz phase array radio Emanuel Cohen.
Jinna Yan Nanyang Technological University Singapore
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
A Unified Approach to Design Distributed Amplifiers Rasit Onur Topaloglu PhD. Student
Amplifiers Amplifier Parameters Gain = Po/Pi in dB = 10 log (Po/Pi)
7-1 McGraw-Hill © 2013 The McGraw-Hill Companies, Inc. All rights reserved. Electronics Principles & Applications Eighth Edition Chapter 7 More About Small-Signal.
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 7-1 Electronics Principles & Applications Eighth Edition Chapter 7 More About Small-Signal.
50-500GHz Wireless Technologies: Transistors, ICs, and Systems
Electronics Principles & Applications Fifth Edition Chapter 7 More About Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
Outline Background Hot-Carrier-Induced Issues
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Indium Phosphide and Related Materials
December 1997 Circuit Analysis Examples 걼 Hairpin Edge Coupled Filter 걼 Bipolar Amplifier 걼 Statistical Analysis and Design Centering 걼 Frequency Doubler.
Solid State Amplifier Circuit Design Student: Branko Popovic Advisor: Geoff Waldschmidt.
VI. HIGH-EFFICIENCY SWITCHMODE HYBRID AND MMIC POWER AMPLIFIERS:
Prospects for Multi-THz III-V Transistors
Ultra-low Power Components
Communication 40 GHz Anurag Nigam.
A High-Dynamic-Range W-band
Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology
Variable Gain CMOS LNA MOREIRA E SILVA, Paulo Marcio, DE SOUSA, Fernando Rangel Introduction Simulation.
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
Presentation transcript:

Student Paper Finalist TU3B-1 An 81 GHz, 470 mW, 1.1 mm2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns H. Park1, S. Daneshgar1, J. C. Rode1, Z. Griffith2, M. Urteaga2, B.S. Kim3, M. Rodwell1 1University of California, Santa Barbara, CA, US 2Teledyne Scientific and Imaging, Thousand Oaks, CA, US 3Sungkyunkwan University, Suwon, Republic of Korea

Outline Motivation, Challenge Power-combining Techniques in mm-Wave Proposed Baluns (2:1 and 4:1 Series Combiners) Power Amplifier Designs (2:1 and 4:1) Measurement Results and Comparisons Conclusion 2 TU3B-1 IMS2014, Tampa, 1-6 June, 2014

mm-Wave Power Amplifier: Challenges mm-Wave PAs: Applications: High speed communications, high resolution images Needed: High power / High efficiency / Small die area (low cost) Extensive power combining Compact power-combining Class E/D/F are poor @ mm-wave insufficient gain ~fmax, high losses in harmonic terminations Efficient power-combining Goal: efficient, compact mm-wave power-combiners TU3B-1 IMS2014, Tampa, 1-6 June, 2014 3

Parallel Power-Combining Output power: POUT = V x (M x I) Parallel connection increases POUT Load Impedance: ROPT = V / (M x I) Parallel connection decreases ROPT High POUT using low VDD  Low ROPT Needs impedance transformation: Wilkinson or lumped lines … High insertion loss Small bandwidth Large die area 4 TU3B-1 IMS2014, Tampa, 1-6 June, 2014

Series Power-Combining & Stacks Parallel connections: IOUT = M x I Series connections: VOUT = N x V Output power: POUT = (N·M) x V x I Load impedance: ROPT = (N/M) x V/I Small or zero power-combining losses Small die area BUT, how do we drive the gates ? Local voltage feedback: drives gates, sets voltage distribution Design challenge: need uniform RF voltage distribution need ~unity RF current gain per element ...needed for simultaneous compression of all FETs. 5 TU3B-1 IMS2014, Tampa, 1-6 June, 2014

Proposed l/4 Baluns Balun structure Simplified model Our proposed balun with l/4 lines Three-conductor transmission-lines  Two separate transmission lines (m3-m2, m2-m1) Fields between m3 and m1 isolated! l/4 line stub → Zstub = open BUT, still long line → high loss and large die area  TU3B-1 IMS2014, Tampa, 1-6 June, 2014 6

Proposed Sub-l/4 Baluns What if balun length is << l/4 ?  Stub line becomes inductive! Sub-l/4 balun: Inductive stub line Tunes transistor COUT !! Short line → Low losses  → Small die area  *Symbol: Three-conductor transmission line TU3B-1 IMS2014, Tampa, 1-6 June, 2014 7

Ideal Tri-axial Line Two separate transmission lines (m3-m2, m2-m1)  E, H fields between m3 and m1 perfectly shielded TU3B-1 IMS2014, Tampa, 1-6 June, 2014

Baluns in Real ICs 1) 2) 3) 4) 1) M1 as a GND 2) Slot-type transmission lines (M1-M2), AC short (2 pF MIM) 3) Microstrip line (M2-M3), E-field shielding NOT negligible 4) Sidewalls between M3-M1 (Faraday cages), l/16 length TU3B-1 IMS2014, Tampa, 1-6 June, 2014 9

2:1 Balun B-to-B Test Results v1 CP = 103fF FC = 81GHz I.L. = -1.1dB S21 = -1.76dB Back-to-back measured S-parameters v2 CP = 78fF FC = 94GHz I.L. = -1.2dB S21 = -1.79dB v3 CP = 65fF FC = 103GHz I.L. = -1.2dB S21 = -1.56dB *Does not de-embed losses of PADs , capacitors, and interconnection lines < 0.6dB single-pass insertion loss, 0.16 dB/2.7° imbalance TU3B-1 IMS2014, Tampa, 1-6 June, 2014 10

Teledyne 0.25 μm HBTs Cell: 4-fingers x 0.25 μm x 6 μm BVCEO = 4.5 V, IC,max = 72 mA POUT = 15.5 dBm ROPT = 56 Ω MAG/MSG including EM-Sim. results Base Emitters to GND Collector fτ =285 GHz, fmax =525 GHz @ JE =4.2 mA/μm2 and VCE =2.5 V 12~13dB MAG @ 86 GHz [Z. Griffith et al, IPRM 2012] Multi-finger 250nm InP HBTs for 220GHz mm-Wave Power Multi-finger 250nm InP HBTs for 220GHz mm-Wave Power TU3B-1 IMS2014, Tampa, 1-6 June, 2014 11

Sub-l/4 Baluns: PA Design Each HBT loaded by 25 W HBT junction area selected so that Imax=Vmax/25 W Each HBT has some COUT Stub length picked so that Zstub=-1/jwCOUT → tunes HBT 4:1 more power than without the combiner. TU3B-1 IMS2014, Tampa, 1-6 June, 2014 12

4:1 PA Designs Using 2:1 Balun Identical input / output baluns 2-section LC input matching network Active bias: Thermal stability & class-AB IC size: 450 x 820 um2 [H. Park et al, CSICS 2013] 30% PAE W-Band InP Power Amplifiers Using Sub-Quarter-Wavelength Baluns for Series-Connected Power-Combining TU3B-1 IMS2014, Tampa, 1-6 June, 2014 13

Single-Stage PA IC Test Results (86GHz) Small signal measurements x4 larger output power than 50 Ohm ROPT device Gain: 10 dB PSAT: >100 mW @2.5V PAE: >30 % 3-dB BW: 23 GHz Large signal measurements Power density (power/die area) = 294 mW/mm2 (including RF pads) = 1210 mW/mm2 (core area) [H. Park et al, CSICS 2013] 30% PAE W-Band InP Power Amplifiers Using Sub-Quarter-Wavelength Baluns for Series-Connected Power-Combining TU3B-1 IMS2014, Tampa, 1-6 June, 2014 14

Two-Stage PA IC Test Results (86GHz) Large signal measurements IC size: 825 x 820 um2 Gain: 17.5 dB PSAT: >200 mW @ 3.0 V PAE: >30 % Power density (power/die area) = 307 mW/mm2 (including RF pads) = 927 mW/mm2 (core area) [H. Park et al, CSICS 2013] 30% PAE W-Band InP Power Amplifiers Using Sub-Quarter-Wavelength Baluns for Series-Connected Power-Combining TU3B-1 IMS2014, Tampa, 1-6 June, 2014 15

16:1 PA Using 4:1 Baluns 4:1 series-connected power-combining Each HBT loaded by 12.5W HBT junction area selected so that Imax=Vmax/12.5W Each HBT has some COUT Stub length picked so that Zstub=-1/jwCout → tunes HBT 16:1 more power than without combiner. TU3B-1 IMS2014, Tampa, 1-6 June, 2014 16

PA IC Schematic (2-stages) 2-stage PA using 2:1 and 4:1 baluns 1st stage 2nd stage Long lead lines Zload ≠ Z’load TU3B-1 IMS2014, Tampa, 1-6 June, 2014 17

PA IC Die Image (2-stages) IC Size: 1.08 x 0.98 mm2 TU3B-1 IMS2014, Tampa, 1-6 June, 2014 18

PA IC Test Results (81 GHz) Small signal measurements x16 larger output power than 50 Ohm ROPT device Gain: 17.8dB Output Power: 470mW @2.75 V PAE: 23.4% Large signal measurements Power density (power/die area) = 443 mW/mm2 (including pads) = 1020 mW/mm2 (only core area) TU3B-1 IMS2014, Tampa, 1-6 June, 2014 19

mm-Wave Power Combiners Ref. Tech. Type N-way Freq. (GHz) IL (dB) Size (mm2) This work 0.25 μm InP HBT Sub-l/4 TL 2:1 86 (60-105) 0.52 (0.68) 0.03 Sub-l/4 TL (ring) (60-110) 0.50 (0.63) 0.04 4:1 87 (75-103) 0.91 (1.32) 0.06 2012 Yi 0.13 μm BiCMOS TF 60 77/79 0.73* 1.20* 0.015 2013 Thian 0.18 μm 8:1 83.5 (70.5-85) 1.25 (0.80*) 0.02# 2010 Chen 65 nm CMOS 0.63* 2010 Law 90 nm CMOS Wilkinson 0.54 0.08 2014 Zhao 40 nm CMOS Series/ parallel TF 75 (65-90) 0.92* (1.0) 0.05# 2007 Niknejad TL (55-65) 1.09* (1.25*) - 2007 Liu 0.18 μm CMOS Marchand 57 3.40 0.55 2005 Hamed InGaP/GaAs (15-45) (1.50) 0.40 *Simulation results, #Area estimated by chip image. IL: insertion loss, TF: transformer, and TL: transmission-line. Parentheses in the frequency and insertion loss columns indicate worst-case insertion loss over the indicated bandwidth. TU3B-1 IMS2014, Tampa, 1-6 June, 2014 20

mm-Wave Power Amplifiers Ref. Tech. fmax / ft (GHz) Freq. (GHz) BW (GHz) Max. S21 (dB) Pout (dBm) Peak PAE (%) VCC or VDD (V) Size (mm2) mW /mm2 This work 0.25 μm InP HBT 525 / 285 86 23 9.4 20.4 30.4 2.5 0.37 0.09* 294 1210* 0.25 μm InP HBT 525 / 285 33 10.2 20.8 35.0 0.43 0.14* 285 858* This Work 0.25 μm InP HBT 525 / 285 81 >11.5 17.5 26.7 23.4 2.75 1.06 0.46* 443 1020* 2011 Brown 0.14 μm GaN HEMT 91 7+ 16.0 30.8 >20.0 2.25 530 2012 Micovic 0.14 μm GaN HEMT 230 / 97 95 10+ 18.0+ 31.5+ 20.5+ 12.0 - Yi 0.13 μm BiCMOS 270 / 240 62 84 >10 >8 20.6 27.0 20.1 18.0 9.0 1.8 0.72 0.68 142 93 2013 Agah 45 nm SOI CMOS 89 10.3 15.8 11.0 2.8 0.05* 103 760* Thian 0.18 μm BiCMOS 250 / 170 78 8.9 18.3 14 2.0 3.2 0.85* 29* 2010 Chen 65nm CMOS 60 9 20.3 18.6 15.1 1.0 0.28* 256* Law 90nm CMOS 8 19.9 14.2 1.2 1.76 55 2014 Zhao 40nm CMOS 80 15.2 18.1 20.9 22.3 0.9 0.19* 647* *IC core area (excluding DC feed lines and RF pads), +Value estimated from figure, c)Corporate transmission-line power-combiners, s)Stacked PA. TU3B-1 IMS2014, Tampa, 1-6 June, 2014 21

Conclusion Sub-l/4 baluns for series-power-combining using a low VBV device Low-loss <0.6dB @ 2:1 balun, <0.92dB loss @ 4:1 balun  High power, high efficiency, compact PA IC designs W-band power amplifiers using the 2:1 & 4:1 baluns Record >30 % PAE @ 100 mW, 200 mW, 23.4 % PAE @470 mW Record 23 GHz 3-dB bandwidth, >10GHz 3-dB BW Record 1210 mW/mm2 power density, 1020 mW/mm2 Future directions 220GHz PA designs using the sub-l/4 baluns SiGe PA designs with the optimized balun structures Phased arrays at K/V/E/W bands TU3B-1 IMS2014, Tampa, 1-6 June, 2014 22

Thanks for your attention! hcpark@ece.ucsb.edu TU3B-1 IMS2014, Tampa, 1-6 June, 2014 23