Biodiversity Dr. Manish Semwal. The Biosphere The sum of Earth ’ s ecosystems, the Biosphere encompasses all parts of the planet inhabited by living things.

Slides:



Advertisements
Similar presentations
Ecological Succession: (Important info in blue)
Advertisements

Ecological Succession
How Ecosystems Work Ch. 5, Section 3: How Ecosystems Change
What is the definition of Ecological Succession? The gradual process of change and replacement of some or all of the species in a community.
A forest could have been a shallow lake a thousand years ago. Mosses, shrubs, and small trees cover the concrete of a demolished building.
Ecological Succession
Environmental Science
Law 3: Everything is Always Changing Succession – How the ecosystem changes over time Natural Selection – The survival and reproduction of organisms with.
Warm-up: Succession Read the Case Study,
Science 1206 Unit 01, Section 02, Lesson 02 Succession.
Dr. Manish Semwal GMIS Jakarta
Succession Science 1206.
Biodiversity of World Biomes. The Biosphere In 2002, about 1.7 million species had been discovered and identified by biologists. The sum of Earth’s ecosystems,
Biodiversity Dr. Manish Semwal. The Biosphere The sum of Earth ’ s ecosystems, the Biosphere encompasses all parts of the planet inhabited by living things.
Biodiversity of World Biomes. The Biosphere In 2002, about 1.7 million species had been discovered and identified by biologists. The sum of Earth’s ecosystems,
Section 3: How Ecosystems Change
How Ecosystems WorkSection 3 Section 3: How Ecosystems Change Preview Bellringer Objectives Ecological Succession.
Succession in Ecosystems
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Objectives Chapter 5 Section 3 How Ecosystems Change List two examples.
Chapter 5 How Ecosystems Work Table of Contents
Ecological succession
Ecological Succession. Examples of Changing Ecosystems A forest could have been a shallow lake a thousand years ago. Mosses, shrubs, and small trees cover.
Changes in Ecosystems: Ecological Succession. Definition: Natural, gradual changes in the types of species that live in an area The gradual replacement.
Changes in Ecosystems: Ecological Succession. What is Ecological Succession? Natural, gradual changes in the types of species that live in an area Can.
Warm-up: Succession Read the Case Study,
Ecological Succession Environmental Science. Ecological Succession  Ecosystems are constantly changing.  Ecological succession is a gradual process.
How Ecosystems Work. Section 1  Because plants make their own food, they are called producers.  Producers are also called autotrophs, or self-feeders.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Life Depends on the Sun Energy from the sun enters an ecosystem when.
How Ecosystems WorkSection 3 Ecosystems are constantly changing. Ecological succession is a gradual process of change and replacement of the types of species.
Chapter 3: How ecosystems work Section 3.3: How ecosystems change.
How Ecosystems Change: Ecological Succession ES Textbook, Chapter 5 Pages
ECOLOGICAL SUCCESSION Ecosystems tend to change with time until a stable system is formed. The stable system that will form depends on climatic limitations.
How Ecosystems WorkSection 3 DAY ONE Chapter 5 How Ecosystems Work Section 3: How Ecosystems Change.
5-3 How Ecosystems Change Page 129. A. Ecological Succession 1. Ecological Succession is a gradual process of change and replacement of some or all of.
Title your page: Succession Notes. Succession: The growth of an area through the gradual replacement of one plant community by another eventually leading.
Objectives List two types of ecological succession.
Section 3: How Ecosystems Change
Life Depends on the Sun Energy from the sun enters an ecosystem when plants use light energy to make sugar molecules. This happens through a process called.
How to Use This Presentation
Section 4: How Ecosystems Change
Ecological Succession
Why this issue is an important one
Ecological Succession
Section 3: How Ecosystems Change
Section 3: How Ecosystems Change
Section 3: How Ecosystems Change
Environmental Science
Section 3: How Ecosystems Change
Ecological Succession
Notepack 11 Part B.
Chapter 5 Objectives List two examples of ecological succession.
Section 3: How Ecosystems Change
Ch 5 – how ecosystems work
Section 3: How Ecosystems Change
Ecological Succession
Ecosystems & The Organization Of Life
Once these notes are done, we will review and have a test.
Ecological Succession
Section 3: How Ecosystems Change
The Carbon Cycle The carbon cycle is the movement of carbon from the nonliving environment into living things and back. Carbon Essential part of proteins,
Section 3: How Ecosystems Change
Section 3: How Ecosystems Change
Ecological Succession B A gradual process of change and replacement of the types of species in a community over time Click here to see a quick explanation.
Section 3: How Ecosystems Change
Ecological Succession
Section 3: How Ecosystems Change
Section 3: How Ecosystems Change
Section 3: How Ecosystems Change
Presentation transcript:

Biodiversity Dr. Manish Semwal

The Biosphere The sum of Earth ’ s ecosystems, the Biosphere encompasses all parts of the planet inhabited by living things. In 2002 about 1.7 million species had been discovered and identified by biologists, although estimates of the true number of species on earth range from 3.6 to over 10 million (Wilson 2002). For at least 3.8 billion years, a complex web of life has been evolving here on Earth

Biome The term biome refers to a major type of terrestrial ecosystem that typifies a broad geographical region.

Biodiversity Biodiversity is an abundance of different life. Biodiversity (biological diversity) is the variety of all living organisms and their interactions. Scientists often speak of three levels of diversity - species, genetic, and ecosystem diversity.

Earth’s Biodiversity

"Biological diversity is the variety and variability among living organisms and the ecological complexes in which they occur.

Genetic diversity is the combination of different genes found within a population of a single species, and the pattern of variation found within different populations of the same species. Coastal populations of Douglas fir are genetically different from Sierran populations

Species diversity is the variety and abundance of different types of organisms which inhabit an area. A ten square mile area of Modoc County contains different species than does a similar sized area in San Bernardino County.

Ecosystem diversity encompasses the variety of habitats that occur within a region, or the mosaic of patches found within a landscape. A familiar example is the variety of habitats and environmental parameters in an ecosystem and its grasslands, wetlands, rivers, estuaries, fresh and salt water."

Reasons human cultures value biodiversity: The rich variety of species in biological communities gives us food, wood, fibers, energy, raw materials, industrial chemicals, and medicines, all of which pour hundreds of millions of dollars into the world economy each year. Moreover, people have a natural affinity for nature, a sense of “ biophilia, ” wherein they assign a non-utilitarian value to a tree, a forest, and wild species of all kinds

Importance of Biodiversity Pollination For every third bite you take, you can thank a pollinator. Air and Water Purification Biodiversity maintains the air we breathe and the water we drink. Climate Modification By giving off moisture through their leaves and providing shade, plants help keep us and other animals cool. Drought and Flood Control Plant communities, especially forests and wetlands, help control floods. Cycling of Nutrients The elements and compounds that sustain us are cycled endlessly through living things and through the environment.

Importance Habitat Natural ecosystems provide habitat for the world ’ s species (forests, wetlands, estuaries, lakes, and rivers – the world ’ s nurseries). Food All of our food comes from other organisms. Natural Pest Control Services Natural predators control potential and disease-carrying organisms in the world. Drugs and Medicines Living organisms provide us with many drugs and medicines.

Loss of Biodiversity Multiple forces entrained by human activity reinforce one another and force species down. These factors are summarized by conservation biologists under the acronym HIPPO + G (Wilson 2002). Habitat Destruction Invasive Species Pollution Population Overharvesting Global Warming

Threats: Invasive species A species that is not native to a region Threaten native species by taking over resources Keystone species - a species which is CRITICAL to the functioning of an ecosystem – Many different species are dependent on it – If lost, the entire ecosystem is destroyed

Zonation Zonation is the classification of biomes into zones based on their circulation or grouping in a habitat as influenced by environmental factors, such as altitude, latitude, temperature, other biotic factors Supplement An example of ecological zonation is the vertical zonation of the pelagic ocean: epipelagic zone – the zone where photosynthetic organisms (such as planktons) thrive as they require enough light for photosynthesisorganisms (such as planktons) thrive as they require enough light for photosynthesis mesopelagic zone – the zone under epipelagic zone where nektons are abundantnektons are abundant bathypelagic zone – the zone near to the deep sea floor where benthos abound

Succession the gradual and orderly process of change in an ecosystem brought about by the progressive replacement of one community by another until a stable climax is established

Examples of Changing Ecosystems A forest could have been a shallow lake a thousand years ago. Mosses, shrubs, and small trees cover the concrete of a demolished building.

Ecological Succession Gradual process of change and replacement of the types of species in a community. May take hundreds or thousands of years.

6/5/03M-DCC / PCB 2340C19 Primary Succession

Newer communities make it harder for the older ones to survive. Example: Younger birch trees will have a harder time competing with taller, older birch trees for sun, but a shade loving tree may replace the smaller birch trees.

Primary Succession Type of succession that occurs where there was no ecosystem before. Occurs on rocks, cliffs, and sand dunes.

Primary succession is very slow. Begins where there is no soil. Takes several hundred years to produce fertile soil naturally. First species to colonize bare rock would be bacteria and lichens.

Lichens Do not require soil. Colorful, flaky patches. Composed of two species, a fungi and an algae. The algae photosynthesize and the fungi absorbs nutrients from rocks and holds water. Over time, they break down the rock.

As the rocks breaks apart, water freezes and thaws on the cracks, which breaks up the rocks further. When the lichens die, they accumulate in the cracks. Then mosses begin to grow and die, leading to the creation of fertile soil. Fertile soil is made up of the broken rocks, decayed organisms, water, and air.

Mosses on rocks

Primary succession can be seen happening on the sidewalks. If left alone, even NYC would return to a cement filled woodland.

Secondary Succession More common Occurs on a surface where an ecosystem has previously existed. Occurs on ecosystems that have been disturbed or disrupted by humans, animals, or by natural processes such as storms, floods, earthquakes, and volcanoes.

Secondary Succession: Mt. St. Helens Erupted in ,460 acres were burned and flattened. After the eruption, plants began to colonize the volcanic debris. Pioneer species: the first organism to colonize any newly available area and begin the process of ecological succession.

Over time, the pioneer species makes the area habitable by other species. Today, Mt. St. Helens in the process of secondary succession. Plants, flowers, new trees and shrubs have started to grow. If this continues, over time they will form a climax community.

Climax community: the final and stable community. Climax community will continue to change in small ways, but left undisturbed, it will remain the same through time.

Fire and Secondary Succession Natural fire caused by lightening are a necessary part of secondary succession. Some species of trees (ex: Jack pine) can only release their seeds after they have been exposed to the intense heat of a fire. Minor forest fires remove brush and deadwood.

Fire and Secondary Succession Some animals depend on fires because they feed on the newly sprouted vegetation. Foresters allow natural fires to burn unless they are a threat to human life or property.

Old-field Succession Occurs in farmland that has been abandoned. Grasses and weeds grow quickly, and produce many seeds that cover large areas.

Over time, taller plants grow in the area, shading the light and keeping the pioneer species from receiving any light. The longer roots of the taller plants deprive the pioneer species from water. The pioneer species die.

Taller trees begin to grow and deprive the taller plants of water and light. Followed by slow growing trees (oaks, maples) takeover the area. After about a century, the land returns to a climax community.