Diurnal cycles of fossil fuel CO 2 : Comparison of model results with observations at Heidelberg and Schauinsland Felix Vogel 1 including work of: I. Levin.

Slides:



Advertisements
Similar presentations
Amospheric inversions: Investigating the recent inter-annual flux variations ! P. Peylin, C. Rödenbeck, P. Rayner, experimentalists, … Inverse models Data.
Advertisements

BBOS meeting on Boundary Layers and Turbulence, 7 November 2008 De Roode, S. R. and A. Los, QJRMS, Corresponding paper available from
High resolution fossil\industrial CO 2 : Historical Context Kevin Gurney Purdue University Department of Earth and Atmospheric Science Purdue Climate Change.
Fighting the Great Challenges in Large-scale Environmental Modelling I. Dimov n Great challenges in environmental modelling n Impact of climatic changes.
A drag parameterization for extreme wind speeds that leads to improved hurricane simulations Gerrit Burgers Niels Zweers Vladimir Makin Hans de Vries EMS.
R.J. Wichink Kruit 1, D. Simpson 2, M. Schaap 1, R. Kranenburg 1, E. Dammers 1, C.A. Geels 3, C. Skjoth 4, M. Engardt 5, A. Graff 6, R. Stern 7, B. Bessagnet.
Mars’ North and South Polar Hood Clouds Jennifer L. Benson Jet Propulsion Laboratory, California Institute of Technology July 22, 2010 Copyright 2010 California.
Quantifying uncertainties of OMI NO 2 data Implications for air quality applications Bryan Duncan, Yasuko Yoshida, Lok Lamsal, NASA OMI Retrieval Team.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
Theoretical study of the diurnal behavior of VLF signal and comparison with VLF campaign data Sujay Pal [1], Sudipta Sasmal[2], and Sandip K. Chakrabarti[1,2]
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Estimation of daily CO 2 fluxes over Europe by inversion of atmospheric continuous data C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire.
A brief analysis of the TransCom3 Continuous data Experiment at ECMWF Soumia SERRAR and Richard Engelen.
15 / 05 / 2008 Model ensembles for the simulation of air quality over Europe Robert Vautard Laboratoire des Sciences du Climat et de l’Environnement And.
(a)(b)(c) Simulation of upper troposphere CO 2 from two-dimensional and three-dimensional models Xun Jiang 1, Runlie Shia 2, Qinbin Li 1, Moustafa T Chahine.
Inversion of continuous data over Europe : a pseudo-data analysis. C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire des Sciences.
Gloudemans 1, J. de Laat 1,2, C. Dijkstra 1, H. Schrijver 1, I. Aben 1, G. vd Werf 3, M. Krol 1,4 Interannual variability of CO and its relation to long-range.
API (Air Pollution Index) Data for PM10 Mass Concentrations Analysis Adapted from Choi et al The weekend effect in climate variables and air pollutants.
Characterisation of mixing processes in the lower atmosphere using Rn-222 and climate-sensitive gases P. Schelander, A. Griffiths, A.G. Williams, S. Chambers.
Optimising ORCHIDEE simulations at tropical sites Hans Verbeeck LSM/FLUXNET meeting June 2008, Edinburgh LSCE, Laboratoire des Sciences du Climat et de.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
1. Introduction 3. Global-Scale Results 2. Methods and Data Early spring SWE for historic ( ) and future ( ) periods were simulated. Early.
The high resolution in seasonal climate predictions with EC-Earth François Massonnet C. Prodhomme, L. Batté, V. Guemas, F. J. Doblas-Reyes Polar Predictability.
InGOS – an integrating activity preparing for improved Greenhouse Gases monitoring over Europe Ingeborg Levin, Samuel Hammer, Dominik Schmithüsen, Ute.
TOP-DOWN CONSTRAINTS ON REGIONAL CARBON FLUXES USING CO 2 :CO CORRELATIONS FROM AIRCRAFT DATA P. Suntharalingam, D. J. Jacob, Q. Li, P. Palmer, J. A. Logan,
Annual Meeting Nov 2008 Accra, Ghana LAMTO, Ivory Coast (6°13'N / 5°01'W) Monitoring Atmospheric CO 2 and CH 4 concentrations in Western Africa M.Ramonet,
Regional Inversion of continuous atmospheric CO 2 measurements A first attempt ! P., P., P., P., and P. Philippe Peylin, Peter Rayner, Philippe Bousquet,
Indian Power-plant NO x Emissions from OMI and Inventories David Streets and Zifeng Lu Argonne National Laboratory Argonne, IL AQAST-3 Meeting University.
Closing the Global Bomb Radiocarbon Budget Tobias Naegler 1,2, Vago Hesshaimer 1, and Ingeborg Levin 1 1 Institut für Umweltphysik, Universität Heidelberg,
Monitoring and Modelling in the Malé Declaration Kevin Hicks Stockholm Environment Institute (SEI), UK Bangkok, March 2008 Malé Declaration 6 th Monitoring.
Extending the history of atmospheric CH 4 concentrations back to 650 kyr ago European Geosciences Union European Geosciences Union General Assembly 2005.
P. K. Patra*, R. M. Law, W. Peters, C. Rodenbeck et al. *Frontier Research Center for Global Change/JAMSTEC Yokohama, Japan.
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
An alternative explanation to the size and location of the missing sink Robert Andres 1 Skee Houghton 2 1 Environmental Sciences Division, Oak Ridge National.
Eugene S. Takle Iowa State University Midwest Weather Working Group Indianapolis, IN 7 October 2009.
9. Impact of Time Sale on Ω When all EMs are completely uncorrelated, When all EMs produce the exact same time series, Predictability of Ensemble Weather.
CO/FFCO 2 RATIOS DERIVED FROM RADIOCARBON OBSERVATIONS - THE ROLE OF BIOSPHERIC COMPONENT KAZIMIERZ ROZANSKI AGH University of Science and Technology Krakow,
An attempt to quantify fossil fuel CO 2 over Europe Ute Karstens 1, Ingeborg Levin 2 1 Max-Planck-Institut für Biogeochemie, Jena 2 Institut für Umweltphysik,
LONG-TERM TALL TOWER CO 2 MONITORING IN HUNGARY László HASZPRA Hungarian Meteorological Service Zoltán BARCZA Eötvös Loránd University.
Evaluation of CO and SF 6 as quantitative tracers for fossil fuel CO 2 : The Experimentalists’ view Ingeborg Levin 1, Ute Karstens 2, Ulrike Gamnitzer.
Evaluation of CO and SF 6 as quantitative tracers for fossil fuel CO 2 : The Experimentalists’ view Ingeborg Levin 1, Ute Karstens 2, Ulrike Gamnitzer.
Quantifying the decrease in anthropogenic methane emissions in Europe and Siberia using modeling and atmospheric measurements of carbon dioxide and methane.
Diurnal Water and Energy Cycles over the Continental United States from three Reanalyses Alex Ruane John Roads Scripps Institution of Oceanography / UCSD.
Significant changes in observed CO 2 and O 2 online records at Jungfraujoch station C.Uglietti, M. Leuenberger, F.L.Valentino Climate and Environmental.
Combined 14 CO 2 and CO Observations: A key to high-resolution fossil fuel CO 2 records ? ! Ingeborg Levin 1 and Ute Karstens 2 1 Institut für Umweltphysik.
Intercomparison of Mesoscale and Global Atmospheric Transport Models over Western Europe P. Ciais2), A.T. Vermeulen1), C. Geels3), P. Peylin2), M. Gloor4),
List of the measurements performed at Mace Head:
13 / 10 / 2006 Uncertainty and regional air quality model diversity: what do we learn from model ensembles? Robert Vautard Laboratoire des Sciences du.
Surface Ocean pCO 2 and Air-Sea CO 2 -exchange in Coupled Models Birgit Schneider 1*, Laurent Bopp 1, Patricia Cadule 1, Thomas Frölicher 2, Marion Gehlen.
(a)(b)(c) Simulation of upper troposphere CO 2 from two-dimensional and three-dimensional models Xun Jiang 1, Runlie Shia 2, Qinbin Li 1, Moustafa T Chahine.
Rong Wang Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China Laboratoire des Sciences du Climat.
1/39 Seasonal Prediction of Asian Monsoon: Predictability Issues and Limitations Arun Kumar Climate Prediction Center
Potential of 14 CO 2 to constrain emissions at country scale Y. Wang, G. Broquet, P. Ciais, F. Vogel, F. Chevallier, N. Kadygrov, L. Wu, R. Wang, S. Tao.
Energy and Water Climate change impact assessment on hydro-electric project using multi-model climate ensemble Vinod Chilkoti, PhD Candidate Tirupati.
Evaluation of TM5 performance for assimilation purpose
CO2 sources and sinks in China as seen from the global atmosphere
Quantifying uncertainties of OMI NO2 data
“Biosphere Experiment” Intercomparison of atmospheric CO2 simulations based on biosphere fluxes from different terrestrial ecosystem models U. Karstens,
On instrumental errors and related correction strategies of ozonesondes: possible effect on calculated ozone trends for the nearby sites Uccle and De Bilt.
Presented by: David Groff NOAA/NCEP/EMC IM Systems Group
Charles Lin1, Jia-Ting Lin1, Loren Chang2, Yang-Yi Sun2
Global Climate Predictions
An Approach to Enhance Credibility of Decadal-Century Scale Arctic
Constraints on Asian Carbon Fluxes using TRACE-P CO2/CO Correlations
A. Aulinger, V. Matthias, M. Quante, Institute for Coastal Research
Inverse modeling of European sources:
Topic 3: Meteorology and data filtering
Title Why do we underestimate Elemental Carbon in PM?
Mixing layer transport flux of particulate matter in Beijing, China
Andrew Manning School of Environmental Sciences
Presentation transcript:

Diurnal cycles of fossil fuel CO 2 : Comparison of model results with observations at Heidelberg and Schauinsland Felix Vogel 1 including work of: I. Levin 1, U. Karstens 2, C. Rödenbeck 2, M. Krol 3, S. Houweling 3, P. Peylin 4, P. Bousquet 4, C. Aulagnier 4, C. Geels 5, A. Vermeulen 6 1 Institut für Umweltphysik, Universität Heidelberg 2 Max-Planck-Institute for Biogeochemistry, Jena 3 National Institute for Space Research Utrecht 4 Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette 5 National Environmental Research Institute Roskilde 6 Energy research Center of the Netherlands, Petten 5 th CarboEurope-IP Integrated Project Meeting, Poznań 2007

 Introduction  Methods - Calculating FFCO 2 from observations - Statistics  Comparison - Heidelberg - Schauinsland  Summery & Outlook Outline

 Introduction  Methods - Calculating FFCO 2 from observations - Statistics  Comparison - Heidelberg - Schauinsland  Summery & Outlook Outline

Calculating FFCO 2 from observations weekly excess  14 C weekly excess CO 2 continuous excess CO calculated continuous excess FFCO 2 weekly excess ratio FFCO 2 /CO X = weekly excess CO weekly excess FFCO 2 [Levin et al GRL Vol.30/23]

Mean diurnal cycle - Heidelberg 2002 Central European Time Calculating FFCO 2 from observations

 Introduction  Methods - Calculating FFCO 2 from observations - Statistics  Comparison - Heidelberg - Schauinsland  Summery & Outlook Outline

Methods - Statistics Wrong phasing of the diurnal cycle significantly decreases the correlation coefficient ! Mean diurnal cycle - Heidelberg summer 2002

R² < 0.2 R² = 0.63 R² = 1  Find maximal correlation coefficient  Determine time shifts in model data  Possibly validate diurnal cycle of the emission inventories  No measure for variability! (Amplitude x 2) Methods - Statistics Time shift = 2h Time shift = 1hTime shift = 0h

Methods - Statistics Why diurnal analysis and not pure comparison of the time series? Advantages:  Less sensitive to pollution events  Reduction of uncertainties  Less computational effort Implicit assumptions:  Similar emission statistics for each season  Diurnal cycle is significant compared to the noise

 Motivation  Methods - Calculating FFCO 2 from observations - Statistics  Comparison - Heidelberg - Schauinsland  Summery & Outlook Outline

Results - Heidelberg Excess FFCO 2 diurnal cycle – Heidelberg Winter 2002 unshifted

Results - Heidelberg Excess FFCO 2 diurnal cycle – Heidelberg Winter FFCO 2, corr = FFCO 2,mod x Rn mod Rn meas Amplitude shifted

Results - Heidelberg Excess FFCO 2 diurnal cycle – Heidelberg Winter Amplitude shifted

Results - Heidelberg Excess FFCO 2 diurnal cycle – Heidelberg Summer shifted Amplitude

Results - Heidelberg Excess FFCO 2 diurnal cycle – Heidelberg summer 2002

 Introduction  Methods - Calculating FFCO 2 from observations - Statistics  Comparison - Heidelberg - Schauinsland  Summery & Outlook Outline

Results - Schauinsland Excess FFCO 2 diurnal cycle - Schauinsland Winter 2002 unshifted

Results - Schauinsland Excess FFCO 2 diurnal cycle - Schauinsland Winter 2002 shifted

Results - Schauinsland Excess FFCO 2 diurnal cycle - Schauinsland Winter 2002

 Motivation  Methods - Calculating FFCO 2 from observations - Statistics  Results - Schauinsland - Heidelberg  Summery & Outlook Outline

 Differences between IER and EDGAR are not significant but IER seems to perform better in Heidelberg  Large spread in models  Ensemble analysis shows that the significant shifts in the diurnal cycle are not likely due to the inventories  Winter better than summer - less variable boundary layer height in winter - vertical mixing in summer is still a problem Summery

 Analysis: - Extensive variability analysis - Running R² on continuous records  Methods: - Studies on CO diurnal cycle - Include Δ 14 C bio - Further studies on the radon source - Measurements at more representative sites Outlook