Calculate the components of a force vector. Add two force vectors together. Draw a free body diagram. Calculate whether a truss is statically determinate.

Slides:



Advertisements
Similar presentations
Newton’s First & Second Law
Advertisements

Analyzing the Strength of Structural Members
Calculating Truss Forces
Goal: To learn about Forces
Calculating the “actual” internal force in truss bridge members
What is a Truss? A structure composed of members connected together to form a rigid framework. Usually composed of interconnected triangles. Members carry.
A ladder with length L weighing 400 N rests against a vertical frictionless wall as shown below. The center of gravity of the ladder is at the center of.
Bridge Design part 1 By Alan Pennington, materials taken from and adapted West Point Bridge Design.
Bridge Design part 3 Note: have worksheet ready for vector work
Bridge Design part 2 Note: have worksheets of triangles for using trig functions ready By Alan Pennington, materials taken from and adapted West Point.
Newton’s First & Second Law AP Physics C. Unit is the Newton(N) or pound (lb) Is by definition a ….. push or a pull Can exist during physical contact.
Dynamics – Ramps and Inclines
Graphical Analytical Component Method
Forces and Newton’s Laws of Motion
Forces in Two Dimension
Warmup.
Chapter 3 Vectors and Two-Dimensional Motion. Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector.
Vectors - Fundamentals and Operations A vector quantity is a quantity which is fully described by both magnitude and direction.
Vectors and Direction Investigation Key Question: How do you give directions in physics?
Unit 3 Vectors and Motion in Two Dimensions. What is a vector A vector is a graphical representation of a mathematical concept Every vector has 2 specific.
Forces in 2D Chapter Vectors Both magnitude (size) and direction Magnitude always positive Can’t have a negative speed But can have a negative.
Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force– is a push or pull 1. A force is needed to change an object’s state of motion 2. State of motion.
Vector Quantities We will concern ourselves with two measurable quantities: Scalar quantities: physical quantities expressed in terms of a magnitude only.
Chapter 4 Sec 6-8 Weight, Vector Components, and Friction.
Structural Analysis I Structural Analysis Trigonometry Concepts
Structural Analysis I Truss Bridge Definitions Static Determinancy and Stability Structural Analysis Trigonometry Concepts Vectors Equilibrium Reactions.
Objectives: The student will be able to: Draw an accurate free body diagram locating each of the forces acting on an object or a system of objects. Use.
CHAPTER 5 FORCES IN TWO DIMENSIONS
Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Arrows are used to represent forces. The length of.
PAP Physics. Unit is the NEWTON(N) Is by definition a push or a pull Can exist during physical contact (Tension, Friction, Applied Force) Can exist with.
Newton’s Three Laws of Motion and Forces
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
Section 5.1 Section 5.1 Vectors In this section you will: Section ●Evaluate the sum of two or more vectors in two dimensions graphically. ●Determine.
Chapter 4 Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact.
Forces Summarizing a few things we know…. From the Bowling Ball activities we have evidence that… Forces are responsible for changes in motion – F same.
Vector components and motion. There are many different variables that are important in physics. These variables are either vectors or scalars. What makes.
Unit 2 Notes. Free Body Diagrams Show an object and the forces acting on it The object is represented by a circle (you can write the object’s name inside.
Structural Analysis II
Structural Analysis II Structural Analysis Trigonometry Concepts Vectors Equilibrium Reactions Static Determinancy and Stability Free Body Diagrams Calculating.
Friction. Biblical Reference And they pulled him up with the ropes and lifted him out of the cistern. Jeremiah 38:13.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
Resolution and Composition of Vectors. Working with Vectors Mathematically Given a single vector, you may need to break it down into its x and y components.
Chapter 4 The Laws of Motion.
Three blocks of masses M 1 =2 kg, M 2 =4 kg, and M 3 =6 kg are connected by strings on a frictionless inclined plane of 60 o, as shown in the figure below.
4-8 Applications Involving Friction, Inclines
SOHCAHTOA Can only be used for a right triangle
Things that are in balance with one another illustrate equilibrium.
CH5 Forces and Newton’s Laws of Motion Physics Fall, 2015 Mrs. Kummer 1.
Unit is the NEWTON(N) Is by definition a push or a pull Can exist during physical contact(Tension, Friction, Applied Force) Can exist with NO physical.
Topic 2.2 Extended B – Applications of Newton’s second.
Calculating Truss Forces
Newton’s First & Second Law
Forces, Newton’s First & Second Laws AP Physics 1.
Mechanical Equilibrium
Calculating the “actual” internal force in truss bridge members
Calculating Truss Forces
Calculating Truss Forces
Chapter 4 Newton’s Laws.
Newton’s First & Second Law
Calculating Truss Forces
What is a Truss? A structure composed of members connected together to form a rigid framework. Usually composed of interconnected triangles. Members carry.
Newton’s First & Second Law
Newton’s First & Second Law
Newton’s First & Second Law
Calculating Truss Forces
Vectors and Free Body Diagrams
Newton’s First & Second Law
Presentation transcript:

Calculate the components of a force vector. Add two force vectors together. Draw a free body diagram. Calculate whether a truss is statically determinate or indeterminate. Write and solve a force vector equilibrium equation. Use the Method of Joints to calculate the internal force in every member in a truss. Evaluate a truss, to determine if it can carry a given load safely by calculating factors of safety for individual members.

A structure that cannot be analyzed using the equations of equilibrium alone is called statically indeterminate. A structure that can be analyzed using the equations of equilibrium alone is called statically determinate. Only statically determinate trusses can be analyzed with the Method of Joints. A statically determinate truss with two reactions must satisfy the mathematical equation Where j is the number of joints and m is the number of members.

How many joints does this bridge have? 6 How many members does this bridge have? 10 Is this bridge statically determinate? In other words does 2j = m+3? No, 2(6) = 12 and 10+3 = 13 Thus 2J does NOT equal m+3

How many joints does this bridge have? 6 How many members does this bridge have? 9 Is this bridge statically determinate? In other words does 2j = m+3? Yes, 2(6) = 12 and 9+3 = 12 Thus 2J does equal m+3

A free body diagram is a pictorial representation of all of the forces which act on an object. Suppose we have a box being pushed by an applied force to the right. What forces act on the box? Weight, aka, the Force due to gravity, - This force is ALWAYS drawn straight down. Normal Force – The force that a SURFACE applies on an object. Always drawn PERPENDICULAR to the surface Applied Force - Either a PUSH or a PULL Friction force – the force that ALWAYS opposes the motion. Drawn at the surface.

Often times the free body diagram is drawn using what is called a POINT MODEL. The object is drawn as a single point with the forces labeled as “F”. A subscript is added according to the type of force it is.

In the case of bridge members and ropes, we have a special type of force called TENSION. Since you can’t PUSH a rope, the tension is ALWAYS drawn as if your are pulling the object. In other words, it is always drawn AWAY from the object. If there are multiple ropes, subscripts must be used to classify them separately. FgFg F T1 F T2

When an object is at rest, the SUM of all of the FORCE vectors must be equal to zero. So when you write your equations they MUST equal ZERO.

A vector is any quantity which has both MAGNITUDE (# and a unit) and DIRECTION. The vector is always represented as an ARROW. Suppose the vector below represents a displacement of 10m. 10 m, NORTH-EAST MAGNITUDE DIRECTION

Direction is best described by using a Cartesian Coordinate system. Forces on the negative x or negative y axis must have a negative sign. Using this idea allows us to write the equation of equilibrium. Assume the object is at rest. F a1 =+10 NF a2 =? N

Assume all forces are TENSION! F BC F AB F BI

F BC F AB F BI If you knew the FORCE in member AB, you would be able to solve for the FORCE in member BC. Isolating just ONE JOINT to analyze the force is called the METHOD OF JOINTS.

A truss is a structure composed of members arranged in interconnected triangles. For this reason, the geometry of triangles is very important in structural analysis. This diagram shows a right triangle—a triangle with one of its three angles measuring exactly 90 o. Sides a and b form the 90 o angle. The other two angles, identified as θ 1 and θ 2, are always less than 90 o. Side c, the side opposite the 90 o angle, is always the longest of the three sides. It is called the hypotenuse of the right triangle. Thanks to an ancient Greek mathematician named Pythagoras, we can easily calculate the length of the hypotenuse of a right triangle. The Pythagorean Theorem tells us that:

The Pythagorean Theorem shows how the lengths of the sides of a right triangle are related to each other. But how are the lengths of the sides related to the angles? The sine of an angle (abbreviated “sin”) is defined as the length of the opposite side divided by the length of the hypotenuse. For example, the sine of the angle θ 1 would be calculated as: The cosine of an angle (abbreviated “cos”) is defined as the length of the adjacent side divided by the length of the hypotenuse. Applying this definition to our example, we have:

Once the coordinate axis system is established, we can represent the direction of any vector as an angle measured from either the x-axis or the y-axis. For example, the force vector at right has a magnitude (F) of 20 Newtons and a direction (θ) of 50 degrees, measured counterclockwise from the x-axis. This force can also be represented as two equivalent forces, one in the x-direction and one in the y-direction. Each of these forces is called a component of the vector F.

The required load our bridge must withstand is 49N or 5-kg. Since there are TWO trusses held together by lateral bracings, HOW much load does ONE truss bridge hold? 24.5 N

The load acts downward at joints J, K, and L. How much force acts at each one of these locations? 8.17 N

The two upward forces are both force normals. The “R” in this case stands for REACTION as they are a reaction to the load. How much force does each REACTION FORCE(force normal) support? N

RARA F AB F AI

RARA F AB F AI   What is the VALUE of the angle THETA?  Length BI Length AB What other angle are also equal to theta? Length AI

   

RARA F AB F AI   F AI cos  F AI sin  RARA F AB F AI sin  F AI cos  Let’s now REDRAW the FBD!

RARA F AB F AI sin  F AI cos  This force is COMPRESSION and NOT tension, thus it is a TUBE!

Use the Method of Joints to solve for the rest of the internal forces. Use the calculation guide for reference and to keep organized. Wait, there is ONE last thing…..

When an engineer designs a structure, he or she must consider many different forms of uncertainty. There are three major types of uncertainty that affect a structural design: 1.There is always substantial uncertainty in predicting the loads a structure might experience at some time in the future. 2.The strengths of the materials that are used to build actual bridges are also uncertain. 3.The mathematical models we use for structural analysis and design are never 100% accurate.

The engineer accounts for all forms of uncertainty by making the structure somewhat stronger than it really needs to be—by using a factor of safety in all analysis and design calculations. In general, when it is used in the analysis of an existing structure, the factor of safety is a defined as In a truss, the actual force in a member is called the internal member force, and the force at which failure occurs is called the strength. Thus we can rewrite the definition of the factor of safety as

For example, if a structural member has an internal force of 5000 pounds and a strength of 7500 pounds, then its factor of safety, FS, is If the factor of safety is less than 1, then the member or structure is clearly unsafe and will probably fail. If the factor of safety is 1 or only slightly greater than 1, then the member or structure is nominally safe but has very little margin for error—for variability in loads, unanticipated low member strengths, or inaccurate analysis results. Most structural design codes specify a factor of safety of 1.6 or larger (sometimes considerably larger) for structural members and connections.

 Calculate the internal member force  Use the previously found strengths to calculate the factors of safety for each bridge member