Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.

Slides:



Advertisements
Similar presentations
Impurity effect on charge and spin density in α-Fe
Advertisements

169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
Mössbauer Spectroscopy under Magnetic Field to Explore the Low Temperature Spin Structure in a Molecular Layered Ferrimagnet A. Bhattacharjee, P. Gütlich.
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Relativistic Effects in Gold Chemistry Jan Stanek Jagiellonian University Marian Smoluchowski Institute of Physics Krakow, Poland.
investigated by means of the Mössbauer Spectroscopy
Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
Fractal behavior of the BCC/FCC phase separation in iron-gold alloys Artur Błachowski 1, Krzysztof Ruebenbauer 1, Anna Rakowska 2,3 1 Mössbauer Spectroscopy.
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Fundamentals of Magnetism T. Stobiecki. Definitions of magnetic fields Induction: External magnetic field: Magnetizationaverage magnetic moment of magnetic.
Electron Spin Resonance Spectroscopy
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
NMR Spectroscopy.
1 CHAPTER 13 Molecular Structure by Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR) Spectroscopy
Integration 10-6 Integration reveals the number of hydrogens responsible for an NMR peak. The area under an NMR peak is proportional to the number of equivalent.
Fundamentals of Magnetism T. Stobiecki, Katedra Elektroniki AGH 2 wykład
57Fe Mössbauer Spectroscopy
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Electron Spin Resonance Spectroscopy
Corey Thompson Technique Presentation 03/21/2011
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Mossbauer Spectroscopy
Determination of Spin-Lattice Relaxation Time using 13C NMR
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Magnetic Resonance Contributions to Other Sciences Norman F. Ramsey Harvard University Principles of Magnetic Resonance First experiments Extensions to.
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
Collinear laser spectroscopy of 42g,mSc
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
NMR spectroscopy in solids: A comparison to NMR spectroscopy in liquids Mojca Rangus Mentor: Prof. Dr. Janez Seliger Comentor: Dr. Gregor Mali.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
MOLECULAR SPECTROSCOPY  SPECTROSCOPY IS THAT BRANCH OF SCIENCE WHICH DEALS WITH THE STUDY OF INTERACTION OF ELECTROMAGNETIC RADIATION WITH MATTER.  ELECTROMAGNETIC.
M. Kopcewicz and T. Kulik a ) Institute of Electronic Materials Technology, Warszawa, Wólczyńska Street 133, Poland, a ) Faculty of Materials Science.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
NMR Spectroscopy. NMR NMR uses energy in the radio frequency range. NMR uses energy in the radio frequency range. This energy is too low to cause changes.
An Introduction to Fe-based superconductors
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
The first-order magnetostructural transition in Gd 5 Sn 4 D.H. Ryan Physics Department, McGill University, Montreal, QC, Canada, H3A 2T8
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
hyperfine interactions (and how to do it in WIEN2k)
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Magnetism of the regular and excess iron in Fe1+xTe
Comparing erbium moments derived from 166 Er Mössbauer spectroscopy and neutron diffraction D.H. Ryan and J.M. Cadogan Physics Department, McGill University,
MOLECULAR SPECTROSCOPY
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Jun Hee Cho1, Sang Gil Ko1, Yang kyu Ahn1, Eun Jung Choi2
Mossbauer spectroscopy
University of Ioannina
Phase diagram of FeSe by nematic ultrafast dynamics
NMR study of 133Cs in a new quasi-one-dimensional conducting platinate
Electric quadrupole interaction in cubic BCC α-Fe
New Measurements of the Hyperfine Interactions and Dipole Moment of KI
NICPB, Tallinn, Estonia: R. Stern I. Heinmaa A. Kriisa E. Joon
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Z. Leśnikowski, E. Przelazły, K. Dziedzic-Kocurek, J. Stanek
Ion-beam, photon and hyperfine methods in nano-structured materials
Advanced Pharmaceutical Analysis
Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College-Chennai University of Madras.
Presentation transcript:

Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K. Wojciechowski 3, Z.M. Stadnik 4 1 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Cracow, Poland 2 Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland 3 Department of Inorganic Chemistry, Faculty of Material Science and Ceramics, AGH University of Science and Technology, Cracow, Poland 4 Department of Physics, University of Ottawa, Ottawa, Canada

Fe-Se phase diagram The following phases form close to the FeSe stoichiometry: 1) tetragonal P4/nmm structure similar to PbO, called α-FeSe (or β-FeSe) 2) hexagonal P6 3 /mmc structure similar to NiAs, called β-FeSe (or δ-FeSe) 3) hexagonal phase Fe 7 Se 8 with two different kinds of order, i.e., 3c (α-Fe 7 Se 8 ) or 4c (β-Fe 7 Se 8 ) A tetragonal P4/nmm phase transforms into Cmma orthorhombic phase at about 90 K, and this phase is superconducting with T c ≈ 8 K.

Aim of this contribution is to answer two questions concerned with tetragonal/orthorhombic FeSe: 1) what kind of defects makes excess iron: interstitial iron Fe 1+x Se or selenium vacancies FeSe 1-x ? 2) is there electron spin density on iron ? Crystal structure of α-FeSe Superconductivity has been discovered for compound with excess iron FeSe 0.88 [F.C. Hsu et al., Proc. Natl. Acad. Sci. U.S.A. 105, (2008)].

Fe 1.05 Se (FeSe 0.95 )

S = 0.46 mm/s Δ = 0.26 mm/s S = 0.55 mm/s Δ = 0.28 mm/s

- point A corresponds to the spin rotation in hexagonal phase - region B shows transformation between tetragonal and orthorhombic structures - point C shows transition to the superconducting state Magnetic susceptibility measured upon cooling and subsequent warming in field of 5 Oe

A - relative contributions obtained from RT spectrum and kept constant in remaining fits S - total spectral shift versus RT α-Fe Δ - quadrupole splitting  - absorber linewidth common for all lines Change in isomer shift (electron density on Fe nucleus) for minor doublet (corrected for SOD) S 80 - S RT = mm/s ↓ ρ 80 - ρ RT = –0.86 electron a.u. -3 tetragonal orthorhombic and superconducting

Mössbauer spectra obtained in external magnetic field aligned with γ-ray beam Hyperfine magnetic fields on both Fe sites are equal to applied external magnetic field. Principal component of the electric field gradient (EFG) on Fe nucleus was found as negative on regular Fe sites, and seems to be positive for intercalated Fe atoms.

Conclusions 1. Dominant defects for excess iron are formed as intercalated iron on the octahedral sites between iron selenium layers. The electron density between iron selenium layers lowers upon transition to the orthorhombic phase making system more 2-dimensional. 2. There is no net electron spin density in the unit cell. Hence, there is no magnetic moment on Fe nuclei in the superconducting FeSe.