Gerda Neyens for following ‘moments and radii’ collaborations at ISOLDE-CERN: Existing: (1) COLLAPS = COLinear LAser Spectroscopy beamline +  -NMRI, g,

Slides:



Advertisements
Similar presentations
MINIBALL g-ray Spectroscopy far from Stability
Advertisements

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
DESIR  SPIRAL2 organization & scientific program layout of the facility status and perspectives LUMIERE  Laser DESIR: the LUMIERE.
ARIS, Tokyo 2014 Spins, Moments, and Radii of Cd by High-Resolution Laser Spectroscopy D. T. Yordanov 1, D. L. Balabanski 2, M. L. Bissell 3, K.
ISCC 24 May 2004L.M. Fraile L.M. Fraile, CERN PH/IS ISOLDE scientific coordinator’s report ISOLDE Collaboration Committee 24 th May 2004 ISOLDE scientific.
Spins, Moments and Charge Radii Beyond 48 Ca INTC-P-313 M.L. Bissell- On behalf of COLLAPS.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Stephane Grévy : October 8, 2012 Unveiling the intruder deformed state in 34 Si 20 and few words about N=28 IFIN - Bucharest F. Rotaru.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
1 In-Beam Observables Rauno Julin Department of Physics University of Jyväskylä JYFL Finland.
Experimental evidence for closed nuclear shells Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)
Evolution of Nuclear Structure with the Increase of Neutron Richness – Orbital Crossing in Potassium Isotopes W. Królas, R. Broda, B. Fornal, T. Pawłat,
Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI Groningen Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI.
K. Riisager, TA8 ISOLDEEURONS PCC-Meeting, Mainz (Germany), April 2006 Recent highlights from ISOLDE News from the facility –Users meeting, February.
Experimental studies around N=28… What’s next? ESNT – 4-6/02/2008 Saclay 1)Various experimental approaches for one physics case 2) From data to theoretical.
Wolfram KORTEN 1 Euroschool Leuven – September 2009 Coulomb excitation with radioactive ion beams Motivation and introduction Theoretical aspects of Coulomb.
N = Z N=Z line coincides with doubly-magic core Single-particle states wrt 100 Sn core Neutron-proton correlations in identical orbitals Neutron-proton.
COLLAPS 2012 – Status and Outlook. The COLLAPS 2 IS 529 Spins, Moments and Charge Radii Beyond 48 Ca IS 497 Laser Spectroscopy of Cadmium Isotopes:
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
1 Beta Counting System Li XiangQing, Jiang DongXing, Hua Hui, Wang EnHong Peking University
Electromagnetic moments for isomeric states in nuclei far from stability in nuclei far from stability NIPNE Bucharest ↔ INFN LNL Legnaro 10 experiments.
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
ECT* - The interplay between atomic and nuclear physics, Trento 2015 Laser Spectroscopy of Cd: Simple Trends in Complex Nuclei D. T. Yordanov for.
AGATA Physics Workshop Istanbul, Turkey May 4-7, 2010 G. Duchêne Deformation in N=40 nuclei G. Duchêne, R. Lozeva, C. Beck, D. Curien, F. Didierjean, Ch.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
ISOLDE Workshop /XX Nuclear Charge Radii of Mg Isotopes by Laser Spectroscopy with Combined Fluorescence and β-decay Detection J. Krämer 1, D.T.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Collinear laser spectroscopy with the COLLAPS setup M. L. Bissell on behalf of the COLLAPS collaboraion IS508: Mn IS519: Zn IS529: Ca.
Beta-decay studies of neutron-rich Fe, Co and Ni isotopes at LISOL using the MINIBALL detector Dieter Pauwels, Oleg V. Ivanov, Maria Sawicka, Mark Huyse,
James Cubiss University of York On behalf of the IS534, Sep 2014 collaboration Hyperfine structure studies of At isotopes using in-source.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar
B elgian R esearch I nitiative on e X otic nuclei ISOLDE INTC-P-316 Spokespersons: G. Neyens, M.M. Rajabali, K.U. Leuven Local contact: K.T. Flanagan,
Leuven - Mainz - ISOLDE collaboration at CERN
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
The BeTINa Collaboration
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Structure of exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU 7 th CNS-EFES summer school Wako, Japan August 26 – September 1, 2008 A presentation.
Future Plan with Radioactive ion beam (FPRIB2012) Sukhendusekhar Sarkar Bengal Engineering and Science University, Shibpur, Howrah – ,
Nuclear moments and charge radii of Mg isotopes from N=8 up to (and beyond) N=20 Univ. Mainz: M. Kowalska, R. Neugart K.U.Leuven: D. Borremans, S. Gheysen,
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Laser spectroscopy and beta-NMR for nuclear physics and applications Magdalena Kowalska CERN, PH-Dept Laser spectroscopy setups at ISOLDE Example – COLLAPS.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
In-source laser spectroscopy of Pb, Bi and Po isotopes at ISOLDE Charge Radii around Z = 82 and N = 104 In-source resonant photoionization spectroscopy.
Collinear Laser Spectroscopy of Neutron Rich Potassium, Calcium and Manganese Isotopes M. L. Bissell on behalf of the COLLAPS collaboraion.
The experimental research program at the
In-source laser spectroscopy of mercury isotopes (P-424)
Shell-model calculations for the IoI —a review from a personal point of view Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency.
Tutor: Prof. Yang Sun (孙扬 教授)
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
Emmanuel Clément IN2P3/GANIL – Caen France
ISOLDE Workshop and Users Meeting 2017
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
Systematic study of Z = 83 nuclei: 193,194,195Bi
New Observations from the Hyperfine Structure of 49,51K
Presentation transcript:

Gerda Neyens for following ‘moments and radii’ collaborations at ISOLDE-CERN: Existing: (1) COLLAPS = COLinear LAser Spectroscopy beamline +  -NMRI, g, Q, 10 3 /s (Mainz, Leuven, ISOLDE, …)  10 6 /s (2) COMPLIS = COllaboration for spectroscopy Measurements using a Pulsed Laser Ions Source I,g,Q,  10 7 /s (Orsay, Mainz, Montreal, Grenoble) (3) In-source laser spectroscopy I,g,  10/s ! (Leuven, Liverpool, Orsay, Troisk, Mainz, ISOLDE) (4) NICOLE = Low Temperature Nuclear Orientation +  -NMR I, g, Q 10 4 /s (Leuven, Bonn, Weismann, Oxford) Near future: (5) Using post-accelerated beams at REX-ISOLDE ps-states,  s isomers (Bonn, Munchen, Madrid, Orsay, Sofia, Leuven, …) g 10 5 /s (6) Laser spectroscopy of light ions in a Paul trap  10 4 /s (GSI, Tubingen, Mainz, …) Spins, moments, radii: probing changes in the nuclear shell structure

The strength of ISOLDE: complementary tools to investigate moments and radii of all kinds of elements towards the extremes doubly magic nuclei doubly magic nuclei Halo nuclei (Li, Be, …) Neutron rich region around 132 Sn Neutron skin ? Vanishing shells? From proton to neutron drip line: Shell and sub-shell effects. Monopole migration as function of N Neutron rich N=20 (Na,Mg) islands of inversion (intruder ground states) Shape evolution towards the proton dripline Shape coexistence

Charge radii: probing halo properties of nuclei Two-photon resonance laser spectroscopy: pioneered at TRIUMF-CANADA G. Ewald et al., Phys. Rev. Lett. 94, (2004) R. Sanchez et al., Phys. Rev. Lett. (2005) submitted Laser spectroscopy in a MOT: pioneered at Argonne National Laboratory L.-B. Wang et al.,Phys. Rev. Lett. 93, (2004)  High precision experiments ! 2,0 2,5 3,0 3, Li-isotope radius (fm) 2002: Indirect via elastic scattering of 11 Li on proton target (GSI-Darmstadt) EPJA15, 27 (2002) n n Only the core is charged 11 Li  Charge radius of halo nucleus = to charge radius of core nucleus ? Halo Model: charge radii matter radii 2004: Direct via two-photon laser spectroscopy (GSI, TRIUMF-CANADA, W. Nörthershäuser et al.)  improved precision to 0.04 fm !

Charge radii: probing halo properties of nuclei Two-photon resonance laser spectroscopy: charge radii of halo nuclei G. Ewald et al., Phys. Rev. Lett. 94, (2004) R. Sanchez et al., Phys. Rev. Lett. (2005) submitted High-precision: needed as a stringent test of newly-developed nuclear models !

Charge radii: probing deformation properties of nuclei probing deformation properties of nuclei COMPLIS: changes in the mean square charge radii of Sn-isotopes beyond 132 Sn F. Leblanc et al., Nucl. Phys. A734, 437 (2004) F. Leblanc et al., Phys. Rev. C, 72, (2005)  onset of deformation beyond N=82 for Z=54,55,56 ? Related work from this group: Te-chain (Z=52) N=72 (stable) to N=84 ! (data analysis in progress) Future : Te (N=58 to the stables)

Charge radii: probing deformation properties of nuclei  onset of deformation beyond N=82 for Z=54,55,56 !!! Conclusions: (1)From measured Q-moments: Z=50: a good proton shell closure deformation  < 0.04 (2) Does a kink appear at 132 Sn ?  emergence of a neutron skin ?? COMPLIS: changes in the mean square charge radius of Sn-isotopes beyond 132 Sn F. Leblanc et al., Nucl. Phys. A734, 437 (2004) F. Leblanc et al., Phys. Rev. C, 72, (2005)

Charge radii, magnetic and quadrupole moments: single particle and deformation properties of nuclei In-source laser spectroscopy: pioneered at ISOLDE-CERN probing the most exotic (heavy) elements charge radii, magnetic moments e.g 183 Pb at 10/s at resonance !!! A. Andreyev et al. EPJA14, 63 (2002) H. De Witte, Ph. Thesis K.U. Leuven, 2004 and in preparation high sensitivity  magnetic moments of very neutron rich nuclei ! e.g. Cu isotopes up to 77 Cu magnetic moments no charge radii (less accurate) L. Weissman et al., PRC 65, (2002)

N=28N=50 Magnetic and quadrupole moments: stringent test and input for nuclear models NICOLE: on-line Low Temperature Nuclear Orientation +  -NMR g-factor of 69 Cu ( 3/2 -, 3 min) J. Rikovska et al., Phys. Rev. Lett. 85, 1392 (2000) 71 Cu ( 3/2 -, 19 sec) K. Van Esbroeck, Diploma Thesis, K.U. Leuven, Cu ( 3/2 -, 82 sec) V. Golovko et al., Phys. Rev. C70, (2004)  to go to drip lines: need  -NMR and/or laser spectroscopy !  ( 59 Cu) =   N RILIS in-source spectroscopy I=5/2- assumed Shell model with realistic interaction (G-matrix) and different monopole modifications A. Lisetsky (OXBASH) no quenching 0.7g s N. Smirnova (ANTOINE), monopole by Nowacki 57 Cu test magicity of 56 Ni

Magnetic and quadrupole moments: stringent test and input for nuclear models COLLAPS: *  -NMR on laser-polarized ms-beams  g-factors and quadrupole moments of Na isotopes M. Keim et al., Eur. Phys. J. A8, 31 (2000) M. Keim, AIP Conf. Proc. 455 (ENAM98), 50 (1998)  g-factor of 11 Be halo nucleus W. Geithner et al., PRL 83, 3792 (1999)  g-factor and quadrupole moments of 8,9 Li and the 11 Li halo nucleus D. Borremans et al., Phys. Rev. C (2005) in print R. Neugart et al., in preparation * laser spectroscopy on stable and exotic isotopes  g-factors of 17 Ne (proton halo candidate) and of 23,25 Ne from magnetic moment: isospin symmetry with 17 N is preserved no indication of anomalous nuclear structure W. Geithner et al., PRC 71, (2005)  charge radii of 17-25Ne W. Geithner, PhD thesis, Mainz and in preparation Future: K,Ca,Sc beyond N=30 Cu-isotopes from N=28 to N=50 Zn-Ge-Ga towards and beyond N=50

Magnetic and quadrupole moments: stringent test and input for nuclear models COLLAPS: g-factor of the halo nucleus 11 Be (N=7) W. Geithner et al., PRL 83, 3792 (1999) Q-moment of the halo nucleus 11 Li in preparation 11 Be: I  = ½ + instead of ½ -  neutron in intruder 2s 1/2 orbit ? admixture 2 + x 1d 5/2 ? C 14 C 10 Be 7 Be 3H3H 11 Li 9Li9Li 9C9C 8B8B 11 Be 19 C 6 He 6 Z=3 Z=4 Z=6  11 Be  =   N  80% s 1/2  Suzuki adapted monopole for reduced N=8 gap  100 % s 1/2 p 1/2 neutron has  schmidt =   N s 1/2

Magnetic and quadrupole moments: stringent test and input for nuclear models COLLAPS: g-factor of the halo nucleus 11 Be (N=7) W. Geithner et al., PRL 83, 3792 (1999) Q-moment of the halo nucleus 11 Li in preparation Li : Z = 3   p 3/2 dominates ground state properties 11 Li = 9 Li + 2n = (  p 3/2 + 6n)+ 2n =  p 3/2 + 8n  Multicluster model (Varga et al.,) PRC22 (2002) R  Cluster model (Descouvement) NPA626 (1997) 647 Overestimate the ratio Q(11Li)/Q(9Li)  Antisymmetrized Molecular Dynamics rather good agreement better agreement for 7 Li if cluster-features are included 11 Li  No-core SM (Navratil et al.) (2-body interaction: PRC57 (1998) 3119) (3-body included: PRC68 (2003) ) best agreement for trend ! if e  =1.2e, e =0.2e : good absolute agreement !

T. Otsuka, PRL87 (2001) Magnetic and quadrupole moments: stringent test and input for nuclear models N=20 : not magic for Na-isotopes (Z=11)  need to modify the monopole part of the residual proton-neutron interaction COLLAPS: g-factors and quadrupole moments of Na isotopes (  -NMR on laser-polarized ms-beams) M. Keim et al., Eur. Phys. J. A8, 31 (2000) M. Keim, AIP Conf. Proc. 455 (ENAM98), 50 (1998) Strong attractive interaction between spin-orbit partners  N=20 is decreased when emptying the  d 5/2 orbital  N=16 magic for O-isotopes ( 24 O)  d 5/2 d 3/2  modified monopole in the USD part of the SDPF-M interaction Y. Utsuno, PRC 70, (2004)  N=18: 50% intruder admixture  N=19: pure 2p-2h intruder  N=20: mixed 2p-2h and 4p-4h

Nuclear spin: the basis for a complete spectroscopy COLLAPS: combine hyperfine structure and  -NMR to measure I and g G. Neyens, M. Kowalska, D. Yordanov et al., Phys. Rev. Lett. 94, (2005) 31Mg (N=19) ground state spin I=1/2 g-factor is negative g = (2)   = I.g =  (10)  N 31 Mg in MgO Doppler tuning voltage (V)  -asymmetry HFS  decay asymmetry  -NMR

SDPF-M  I     IMPLICATIONS OF A GROUND STATE I  =1/2   spin-assignments to lowest 4 states Klotz et al., PRC 47, 2502 (1993) Neyens et al., PRL 94, (2005) Nuclear spin: the basis for a complete spectroscopy COLLAPS: combine hyperfine structure and  -NMR to measure I and g G. Neyens, M. Kowalska, D. Yordanov et al., Phys. Rev. Lett. 94, (2005) E(MeV)  New level scheme  sd-shell model : ½+ at 2.5 MeV  to obtain ½+ below 500 keV requires particle-hole excitations ½+ = pure intruder state (2p-2h mainly) ½+ = pure intruder state (2p-2h mainly)  modifications in shell model interactions needed to reproduce a ½+ ground state: needed to reproduce a ½+ ground state: - adapt the monopole term - adapt the monopole term in sd and/ or pf shells ? - adapt the N=20 shell gap ? - adapt the N=20 shell gap ?

The Future: needs … Current limitations and suggested improvements: (1)Improve sensitivity of the collinear laser techniques to run with 10 3 /s instead of 10 6 /s at present (using ISCOOL) to reach more elements (e.g. Cr – Ge region) by optimizing/investigating charge-exchange processes. (2) Beam intensities of 10 4 /s are needed in most experiments  an upgrade in intensity would allow reaching regions of predicted shell changes/deformation, hardly accessibly now e.g. * the region beyond N=20 for Ne,Na,Mg * the region beyond N=32 for K, Ca, Sc, Ti, … * beyond 132 Sn (N=82 shell gap) * neutron rich Pb-region (almost unexplored !)  or perform precision measurements on halo nuclei (e.g. 14 Be, …) (3) Towards the proton/neutron driplines  contamination in laser-ionized beams needs to be suppressed ! e.g * Na isobars in 21 Mg, 22,23 Al beams * Ga isobars in neutron rich Cu, Zn beams

Many thanks to … Piet Van Duppen, Mark Huyse, Nathal Severijns, K.U. Leuven Wilfried Nörthershäuser, Rainer Neugart, Klaus Blaum, Mainz Francois Leblanc, IPN Orsay

… nuclear moments  magnetic moment   probes the configuration (mixing)  very sensitive to changes in the structure due to monopole migration  allows in some cases firm spin-assignments  the quadrupole moment Q  probes collective properties of nuclei (deformation, core polarization)  the nuclear spin I  basis for further spin-determinations ! … charge radii  measure   probes changes in charge deformation  demonstrates the halo-nature of dripline nuclei Spins, moments, radii: probing changes in the nuclear shell structure