Quantum theory of vortices and quasiparticles in d-wave superconductors.

Slides:



Advertisements
Similar presentations
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Advertisements

Jinwu Ye Penn State University Outline of the talk: 1.Introduction to Boson Hubbard Model and supersolids on lattices 2.Boson -Vortex duality in boson.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Transverse force on a magnetic vortex Lara Thompson PhD student of P.C.E. Stamp University of British Columbia July 31, 2006.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Competing Orders: speculations and interpretations Leon Balents, UCSB Physics Three questions: - Are COs unavoidable in these materials? - Are COs responsible.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Putting Competing Orders in their Place near the Mott Transition Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton Burkov (UCSB) Predrag Nikolic (Yale)
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Bosonic Mott Transitions on the Triangular Lattice Leon Balents Anton Burkov Roger Melko Arun Paramekanti Ashvin Vishwanath Dong-ning Sheng cond-mat/
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
‘Checkerboard’ Electronic Crystal State in Lightly-Doped Ca 2-x Na x CuO 2 Cl 2 Yuhki Kohsaka Curry Taylor J.C. Séamus Davis Cornell Tetsuo Hanaguri Yuhki.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Competing orders and quantum criticality
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum critical transport and AdS/CFT HARVARD Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller,
Subir Sachdev Superfluids and their vortices Talk online:
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
July 2010, Nordita Assa Auerbach, Technion, Israel AA, Daniel P. Arovas and Sankalpa Ghosh, Phys. Rev. B74, 64511, (2006). G. Koren, Y. Mor, AA, and E.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Some open questions from this conference/workshop
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
The quantum mechanics of two dimensional superfluids
Deconfined quantum criticality
Presentation transcript:

Quantum theory of vortices and quasiparticles in d-wave superconductors

Talks online at Physical Review B 73, (2006), Physical Review B 74, (2006), Annals of Physics 321, 1528 (2006) Subir Sachdev Harvard University Predrag Nikolic Quantum theory of vortices and quasiparticles in d-wave superconductors

BCS theory for electronic quasiparticles in a d-wave superconductor

Quantized fluxoids in YBa 2 Cu 3 O 6+y J. C. Wynn, D. A. Bonn, B.W. Gardner, Yu-Ju Lin, Ruixing Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Phys. Rev. Lett. 87, (2001).

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Local density of states (LDOS) LDOS of Bi 2 Sr 2 CaCu 2 O 8+  I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

BCS theory for local density of states (LDOS) at the center of a vortex in a d-wave superconductor Y. Wang and A. H. MacDonald, Phys. Rev. B 52, 3876 (1995). M. Ichioka, N. Hayashi, N. Enomoto, and K. Machida, Phys. Rev. B 53, (1996). Prominent feature: large peak at zero bias

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Local density of states (LDOS) 1Å spatial resolution image of integrated LDOS of Bi 2 Sr 2 CaCu 2 O 8+  ( 1meV to 12 meV) at B=5 Tesla. I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV at 4K J. Hoffman et al., Science 295, 466 (2002). G. Levy et al., Phys. Rev. Lett. 95, (2005). Vortices have halos with LDOS modulations at a period ≈ 4 lattice spacings Prediction of periodic LDOS modulations near vortices: K. Park and S. Sachdev, Phys. Rev. B 64, (2001).

STM in zero field

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007)

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007) “Glassy” Valence Bond Solid (VBS)

Outline 1.Our model 2.Influence of electronic quasiparticles on vortex motion 3.Influence of vortex quantum zero-point motion on electronic quasiparticles 4.Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

I. The model

Outline 1.Our model 2.Influence of electronic quasiparticles on vortex motion 3.Influence of vortex quantum zero-point motion on electronic quasiparticles 4.Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

II. Influence of electronic quasiparticles on vortex motion

Negligible damping of vortex from nodal quasiparticles at T=0; can expect significant quantum zero-point motion. Damping increases as T 2 at higher T

Outline 1.Our model 2.Influence of electronic quasiparticles on vortex motion 3.Influence of vortex quantum zero-point motion on electronic quasiparticles 4.Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

III. Influence of vortex quantum zero-point motion on electronic quasiparticles

Influence of the quantum oscillating vortex on the LDOS

No zero bias peak. Absent because of small core size.

Influence of the quantum oscillating vortex on the LDOS Resonant feature near the vortex oscillation frequency

Influence of the quantum oscillating vortex on the LDOS I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000). Resonant feature near the vortex oscillation frequency and no zero-bias peak

Influence of the quantum oscillating vortex on the LDOS I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000). Resonant feature near the vortex oscillation frequency and no zero-bias peak Is there an independent way to determine m v and  v ?

Outline 1.Our model 2.Influence of electronic quasiparticles on vortex motion 3.Influence of vortex quantum zero-point motion on electronic quasiparticles 4.Aharonov-Bohm phases in vortex quantum fluctuations and VBS modulations in LDOS

IV. Aharonov-Bohm phases in vortex motion and VBS modulations in LDOS N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001). S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002). T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Phys. Rev. B 70, (2004). L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Phys. Rev. B 71, (2005). See also Z. Tesanovic, Phys. Rev. Lett. 93, (2004); A. Melikyan and Z. Tesanovic, Phys. Rev. B 71, (2005).

In ordinary fluids, vortices experience the Magnus Force FMFM

Dual picture: The vortex is a quantum particle with dual “electric” charge n, moving in a dual “magnetic” field of strength = h×(number density of Bose particles) C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989)

Influence of the periodic potential on vortex motion

Bosons on the square lattice at filling fraction f=p/q

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Local density of states (LDOS) 1Å spatial resolution image of integrated LDOS of Bi 2 Sr 2 CaCu 2 O 8+  ( 1meV to 12 meV) at B=5 Tesla. I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV at 4K J. Hoffman et al., Science 295, 466 (2002). G. Levy et al., Phys. Rev. Lett. 95, (2005). Vortices have halos with LDOS modulations at a period ≈ 4 lattice spacings Prediction of periodic LDOS modulations near vortices: K. Park and S. Sachdev, Phys. Rev. B 64, (2001).

Influence of the quantum oscillating vortex on the LDOS I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995). S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000). Resonant feature near the vortex oscillation frequency and no zero-bias peak Independent estimate of  v gives a consistency check.

Deconfined quantum criticality What happens when the vortex quantum fluctuation length-scale becomes large ?

Deconfined quantum criticality What happens when the vortex quantum fluctuation length-scale becomes large ? Landau-forbidden quantum phase transition between a superfluid and an insulator with VBS order.

Conclusions Quantum zero point motion of vortices provides a unified explanation for many LDOS features observed in STM experiments. Size of LDOS modulation halo allows estimate of the inertial mass of a vortex The deduced energy of the LDOS sub-gap peak provides a strong consistency check of our proposal Direct detection of vortex zero-point motion may be possible in inelastic neutron or light-scattering experiments Conclusions Quantum zero point motion of vortices provides a unified explanation for many LDOS features observed in STM experiments. Size of LDOS modulation halo allows estimate of the inertial mass of a vortex The deduced energy of the LDOS sub-gap peak provides a strong consistency check of our proposal Direct detection of vortex zero-point motion may be possible in inelastic neutron or light-scattering experiments