N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Summing planar diagrams
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
1 Top Production Processes at Hadron Colliders By Paul Mellor.
Lecture 2. Correction Stockinger, - SUSY skript, Drees, Godbole, Roy - "Theory and.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
Introduction to On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Orsay Summer School, Correlations.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture I.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Twistors and Perturbative Gravity Emil Bjerrum-Bohr UK Theory Institute 20/12/05 Steve Bidder Harald Ita Warren Perkins +Zvi Bern (UCLA) and Kasper Risager.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
Amplitudes et périodes­ 3-7 December 2012 Niels Emil Jannik Bjerrum-Bohr Niels Bohr International Academy, Niels Bohr Institute Amplitude relations in.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
Constraints on renormalization group flows Based on published and unpublished work with A.Dymarsky,Z.Komargodski,S.Theisen.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,

Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture I.
GASYUKU2002,Kyoto-U @ KAGA 1 Computing Feynman Graphs in MSFT Isao Kishimoto (Univ. of Tokyo) based on Collaboration with I.Bars and Y.Matsuo [ hep-th/ ]
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
One particle states: Wave Packets States. Heisenberg Picture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
From Twistors to Calculations. 2 Precision Perturbative QCD Predictions of signals, signals+jets Predictions of backgrounds Measurement of luminosity.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Marginally Deformed Gauge Theories from Twistor String Theory Jun-Bao Wu (SISSA) based on work with Peng Gao hep-th/ v3 KITPC Beijing, October 18,
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Intro to SUSY II: SUSY QFT Archil Kobakhidze PRE-SUSY 2016 SCHOOL 27 JUNE -1 JULY 2016, MELBOURNE.
Amplitudes from Scattering Equations and Q-cuts
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Unitarity Methods in Quantum Field Theory
Chapter V Interacting Fields Lecture 1 Books Recommended:
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Quantum properties of supersymmetric gauge theories
Adnan Bashir, UMSNH, Mexico
It means anything not quadratic in fields and derivatives.
Presentation transcript:

N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004

2 Course Overview Present advanced techniques for calculating amplitudes in gauge theories Motivation for hard calculations Review gauge theories and supersymmetry Color decomposition; spinor-helicity basis; recurrence relations; supersymmetry Ward identities; factorization properties of gauge-theory amplitudes Twistor space; Cachazo-Svrcek-Witten rules for amplitudes Unitarity-based method for loop calculations; loop integral reductions Computation of anomalous dimensions

3 Review of Lecture II Examples Recurrence relations Parke-Taylor amplitudes Twistor space Differential operators

4 Calculate one-line calculation shows amplitude vanishes Calculate one-line calculation shows amplitude vanishes Calculate simplified by spinor helicity Calculate using decoupling equation; no diagrammatic calculation required

5 Recurrence Relations Berends & Giele (1988); DAK (1989)  Polynomial complexity per helicity

6 Properties of the Current Decoupling identity Reflection identity Conservation

7 Contract with polarization vector for last leg, amputate, and take on-shell limit Parke-Taylor equations Proven using the Berends–Giele recurrence relations Maximally helicity-violating or ‘MHV’

8 Gauge-theory amplitude  Color-ordered amplitude: function of k i and  i  Helicity amplitude: function of spinor products and helicities ±1  Function of spinor variables and helicities ±1  Conjectured support on simple curves in twistor space Color decomposition & stripping Spinor-helicity basis Half-Fourier transform

9 Twistor Space Half-Fourier transform of spinors: transform, leave alone  Penrose’s original twistor space, real or complex Study amplitudes of definite helicity: introduce homogeneous coordinates  CP 3 or RP 3 (projective) twistor space Back to momentum space by Fourier-transforming 

10 MHV amplitudes live on lines in twistor space equation for a line

11 Differential Operators Equation for a line ( CP 1 ): gives us a differential (‘line’) operator in terms of momentum- space spinors Equation for a plane ( CP 2 ): also gives us a differential (‘plane’) operator

12 Properties Thus for example

13 Beyond MHV Witten’s proposal: Each external particle represented by a point in twistor space Amplitudes non-vanishing only when points lie on a curve of degree d and genus g, where d = # negative helicities – 1 + # loops g  # loops; g = 0 for tree amplitudes Integrand on curve supplied by a topological string theory Obtain amplitudes by integrating over all possible curves  moduli space of curves Can be interpreted as D 1 -instantons hep-ph/

14 Simple Cases Amplitudes with all helicities ‘+’  degree –1 curves. No such curves exist, so the amplitudes should vanish. Corresponds to the first Parke–Taylor equation. Amplitudes with one ‘–’ helicity  degree-0 curves: points. Generic external momenta, all external points won’t coincide (singular configuration, all collinear),  amplitudes must vanish. Corresponds to the second Parke–Taylor equation. Amplitudes with two ‘–’ helicities (MHV)  degree-1 curves: lines. All F operators should annihilate them, and they do.

15 Other Cases Amplitudes with three negative helicities (next-to-MHV) live on conic sections (quadratic curves) Amplitudes with four negative helicities (next-to-next-to-MHV) live on twisted cubics Fourier transform back to spinors  differential equations in conjugate spinors

16 Even String Theorists Can Do Experiments Apply F operators to NMHV (3 – ) amplitudes: products annihilate them! K annihilates them; Apply F operators to N 2 MHV (4 – ) amplitudes: longer products annihilate them! Products of K annihilate them;

17 A more involved example Interpretation: twistor-string amplitudes are supported on intersecting line segments Don’t try this at home!

18 Simpler than expected: what does this mean in field theory?

19 Cachazo–Svrcek–Witten Construction Amplitudes can be built up out of vertices  line segments Intersections  propagators Vertices are off-shell continuations of MHV amplitudes: every vertex has two ‘  ’ helicities, and one or more ‘+’ helicities Includes a three-point vertex Propagators are scalar ones: i / K 2 ; helicity projector is in the vertices Draw all tree diagrams with these vertices and propagator Different sets of diagrams for different helicity configurations hep-th/

20 Off-Shell Continuation Can decompose a general four-vector into two massless four- vectors, one of which we choose to be the light-cone vector We can solve for f using the condition The rule for continuing k j off-shell in an MHV vertices is then just

21 Off-Shell Vertices General MHV vertex Three-point vertex is just n =3 case

22

23 Corresponds to all multiparticle factorizations Not completely local, not fully non-local Can write down a Lagrangian by summing over vertices Abe, Nair, Park (2004)

24 Seven-point example with three negative helicities

25 Next-to-MHV

26

27 How Do We Know It’s Right? No derivation from Lagrangian Physicists’ proof: –Correct factorization properties (collinear, multiparticle) –Compare numerically with conventional recurrence relations through n=11 to 20 digits

28 A New Analytic Form All-n NMHV (3 – : 1, m 2, m 3 ) amplitude Generalizes adjacent-minus result DAK (1989)

29 Computational Complexity Exponential (2 n–1 –1–n) number of independent helicities Feynman diagrams: factorial growth ~ n! n 3/2 c –n, per helicity –Exponential number of terms per diagram MHV diagrams: exponential growth –One term per diagram Can one do better?

30 Recursive Formulation Bena, Bern, DAK (2004) Recursive approaches have proven powerful in QCD; how can we implement one in the CSW approach? Can’t follow a single leg Divide into two sets by cutting propagator Treat as new higher-degree vertices

31 With higher-degree vertices, we can reformulate CSW construction in a recursive manner: uniform combinatoric factor Compact form

32 Review of Supersymmetry Equal number of bosonic and fermionic degrees of freedom Only local extension possible of Poincaré invariance Extended supersymmetry: only way to combine Poincaré invariance with internal symmetry Poincaré algebra

33 Supersymmetry algebra is graded, that is uses both commutators and anticommutators. For N =1, there is one supercharge Q, in a spin-½ representation (and its conjugate) There is also an R symmetry, a U(1) charge that distinguishes between particles and superpartners

34 Extended Supersymmetry We can have up to eight spinorial supercharges in four dimensions, but at most four in a gauge theory. This introduces an internal R symmetry which is U( N ), and also a central extension Z ij

35 (Super)Conformal Symmetry Classically all massless gauge theories have conformal (scaling) symmetry, but N=4 SUSY has it for the full quantum theory. In two dimensions, the conformal algebra is infinite-dimensional. Here it’s finite, and includes a dilatation operator D, special conformal transformations K, and its superpartners. along with transformations of the new supercharges

36 Supersymmetric Gauge Theories N =1: gauge bosons + Majorana fermions, all transforming under the adjoint representation N =4: gauge bosons + 4 Majorana fermions + 6 real scalars, all transforming under the adjoint representation

37 Supersymmetry Ward Identities Color-ordered amplitudes don’t distinguish between quarks and gluinos  same for QCD and N =1 SUSY Supersymmetry should relate amplitudes for different particles in a supermultiplet, such as gluons and gluinos Supercharge annihilates vacuum Grisaru, Pendleton & van Nieuwenhuizen (1977)

38 Use a practical representation of the action of supersymmetry on the fields. Multiply by a spinor wavefunction & Grassman parameter  where With explicit helicity choices, we can use this to obtain equations relating different amplitudes Typically start with Q acting on an ‘amplitude’ with an odd number of fermion lines (overall a bosonic object)

39 Supersymmetry WI in Action All helicities positive: Helicity conservation implies that the fermionic amplitudes vanish so that we obtain the first Parke–Taylor equation

40 With two negative helicity legs, we get a non-vanishing relation Choosing

41 Additional Relations in Extended SUSY

42 Tree-level mplitudes with external gluons or one external fermion pair are given by supersymmetry even in QCD. Beyond tree level, there are additional contributions, but the Ward identities are still useful. For supersymmetric theories, they hold to all orders in perturbation theory

43 Factorization Properties of Amplitudes As sums of external momenta approach poles, amplitudes factorize More generally as

44 In massless theories, the situation is more complicated but at tree level it can be understood as an expression of unitarity In gauge theories, it holds (at tree level) for n  3 but breaks down for n =2: A 3 = 0 so we get 0/0 However A 3 only vanishes linearly, so the amplitude is not finite in this limit, but should ~ 1/ k, that is This is a collinear limit

45 Universal Factorization Amplitudes have a universal behavior in this limit Depend on a collinear momentum fraction z

46 Splitting Amplitudes Compute it from the three-point vertex

47 Explicit Values

48 Collinear Factorization at One Loop