On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & with Krzysztof.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
1 Top Production Processes at Hadron Colliders By Paul Mellor.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Introduction to On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Orsay Summer School, Correlations.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
QCD at the LHC: What needs to be done? West Coast LHC Meeting Zvi Bern, UCLA Part 2: Higher Order QCD.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
Structure of Amplitudes in Gravity III Symmetries of Loop and Tree amplitudes, No- Triangle Property, Gravity amplitudes from String Theory Playing with.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture I.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Twistors and Perturbative Gravity Emil Bjerrum-Bohr UK Theory Institute 20/12/05 Steve Bidder Harald Ita Warren Perkins +Zvi Bern (UCLA) and Kasper Risager.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
UV structure of N=8 Supergravity Emil Bjerrum-Bohr, IAS Windows on Quantum Gravity 18 th June 08, UCLA Harald Ita, UCLA Warren Perkins Dave Dunbar, Swansea.
Toward the Determination of Effective Action in Superstring Theory and M-Theory Yoshifumi Hyakutake (Osaka Univ.)
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture I.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
On-Shell Methods in QCD: First Digits for BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
June 19, 2007 Manchester1 High-Energy Electroweak Physics Parallel Session Zoltan Kunszt, ETH, Zurich Unitarity Cuts and Reduction of Master Integrals.
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
Amplitudes from Scattering Equations and Q-cuts
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Unitarity Methods in Quantum Field Theory
On-Shell Meets Observation or, the Rubber Meets the Road
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Analytic Results for Two-Loop Yang-Mills
Presentation transcript:

On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Spinor Helicity Basis Spinor products Helicity basis

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Berends–Giele Recursion Relations Polynomial-time approach per helicity when computing numerically

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Factorization Properties of Amplitudes As sums of external momenta approach poles, amplitudes factorize More generally as

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Factorization in Gauge Theories Tree level As but Sum over helicities of intermediate leg In massless theories beyond tree level, the situation is more complicated but at tree level it works in a standard way

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 What Happens in the Two-Particle Case? We would get a three-gluon amplitude on the left-hand side But so all invariants vanish, hence all spinor products vanish hence the three-point amplitude vanishes

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 In gauge theories, it holds (at tree level) for n  3 but breaks down for n =2: A 3 = 0 so we get 0/0 However A 3 only vanishes linearly, so the amplitude is not finite in this limit, but should ~ 1/ k, that is This is a collinear limit Combine amplitude with propagator to get a non-vanishing object

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Two-Particle Case Collinear limit: splitting amplitude

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Universal Factorization Amplitudes have a universal behavior in this limit Depend on a collinear momentum fraction z

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 In this form, a powerful tool for checking calculations As expressed in on-shell recursion relations, a powerful tool for computing amplitudes

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Example: Three-Particle Factorization Consider

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 As, it’s finite: expected because As, pick up the first term; with

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Splitting Amplitudes Compute it from the three-point vertex

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Explicit Values

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Complex Momenta For real momenta, but we can choose these two spinors independently and still have k 2 = 0 Recall the polarization vector: but Now when two momenta are collinear only one of the spinors has to be collinear but not necessarily both Insight from Witten’s twistor string theory (2003)

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 On-Shell Recursion Relations Britto, Cachazo, Feng & Witten (2005) Ingredients  Structure of factorization  Cauchy’s theorem

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Introducing Complex Momenta Define a shift of spinors by a complex parameter z which induces a shift of the external momenta and defines a z -dependent continuation of the amplitude Assume that as

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 A Contour Integral Consider the contour integral Determine A(0) in terms of other residues

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Using Factorization Other poles in z come from zeros of z -shifted propagator denominators Splits diagram into two parts with z -dependent momentum flow

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Exactly factorization limit of z -dependent amplitude poles from zeros of That is, a pole at Residue Notation

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 On-Shell Recursion Relation =

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Partition P : two or more cyclicly-consecutive momenta containing j, such that complementary set contains l, The recursion relations are then On shell

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Number of terms ~ | l − j |  ( n −3) so best to choose l and j nearby Complexity still exponential, because shift changes as we descend the recursion

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Applications Very general: relies only on complex analysis + factorization Fermionic amplitudes Applied to gravity Bedford, Brandhuber, Spence, & Travaglini (2005) Cachazo & Svr č ek (2005) Arkani-Hamed, Cachazo, & Kaplan (2008) Massive amplitudes Badger, Glover, Khoze, Svr č ek (2005) Forde & DAK (2005) Other rational functions Bern, Bjerrum-Bohr, Dunbar, & Ita (2005) Connection to Cachazo–Svr č ek–Witten construction Risager (2005) CSW construction for gravity Bjerrum-Bohr, Dunbar, Ita, Perkins, & Risager (2005)

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Three-Gluon Amplitude Revisted Let’s compute it with complex momenta chosen so that that is, but compute

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Choose common reference momentum q so we have to compute

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Not manifestly gauge invariant but gauge invariant nonetheless, and exactly the n =3 case of the general Parke–Taylor formula!

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Four-Point Example Pick a shift, giving one diagram

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 shift

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Choosing Shift Momenta What are legitimate choices? Need to ensure that as At tree level, legitimate choices Power counting argument in Feynman diagrams for

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Three-point vertices with z -dependent momentum flow ~ z Four-point vertices with z -dependent momentum flow ~ 1 Propagators with z -dependent momentum flow ~ 1/ z  Leading contributions from diagrams with only three-point vertices and propagators connecting j to l : ~ 1/ z (one more vertex than propagators & two ε s)

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Factorization in Complex Momenta Factorization theorems derived for real momenta For multiparticle poles, hold for complex momenta as well At tree level, collinear factorization holds for complex momenta as well, because splitting amplitudes only involve 1/spinor product, so we only get pure single poles Double poles cannot arise because each propagator can only give rise to a single invariant in the denominator

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 MHV Amplitudes Compute the (1 −, j − ) amplitude: choose shift Other diagrams vanish because or

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Prove Parke–Taylor equation by induction

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Singularity Structure On-shell recursion relations lead to compact analytic expressions Different form than Feynman-diagram computation Appearance of spurious singularities physical singularitiesunphysical singularity — cancels between terms

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Loop Calculations: Textbook Approach Sew together vertices and propagators into loop diagrams Obtain a sum over [2,n]-point [0,n]-tensor integrals, multiplied by coefficients which are functions of k and  Reduce tensor integrals using Brown-Feynman & Passarino- Veltman brute-force reduction, or perhaps Vermaseren-van Neerven method Reduce higher-point integrals to bubbles, triangles, and boxes

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Can apply this to color-ordered amplitudes, using color-ordered Feynman rules Can use spinor-helicity method at the end to obtain helicity amplitudes BUT This fails to take advantage of gauge cancellations early in the calculation, so a lot of calculational effort is just wasted.

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Can We Take Advantage? Of tree-level techniques for reducing computational effort? Of any other property of the amplitude?

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Unitarity Basic property of any quantum field theory: conservation of probability. In terms of the scattering matrix, In terms of the transfer matrix we get, or with the Feynman i 

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 This has a direct translation into Feynman diagrams, using the Cutkosky rules. If we have a Feynman integral, and we want the discontinuity in the K 2 channel, we should replace

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 When we do this, we obtain a phase-space integral

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 In the Bad Old Days of Dispersion Relations To recover the full integral, we could perform a dispersion integral in which so long as when If this condition isn’t satisfied, there are ‘subtraction’ ambiguities corresponding to terms in the full amplitude which have no discontinuities

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 But it’s better to obtain the full integral by identifying which Feynman integral(s) the cut came from. Allows us to take advantage of sophisticated techniques for evaluating Feynman integrals: identities, modern reduction techniques, differential equations, reduction to master integrals, etc.

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Computing Amplitudes Not Diagrams The cutting relation can also be applied to sums of diagrams, in addition to single diagrams Looking at the cut in a given channel s of the sum of all diagrams for a given process throws away diagrams with no cut — that is diagrams with one or both of the required propagators missing — and yields the sum of all diagrams on each side of the cut. Each of those sums is an on-shell tree amplitude, so we can take advantage of all the advanced techniques we’ve seen for computing them.

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Original Unitarity-Based Method at One Loop Compute cuts in a set of channels Compute required tree amplitudes Form the phase-space integrals Reconstruct corresponding Feynman integrals Perform integral reductions to a set of master integrals Assemble the answer

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Unitarity-Based Calculations Bern, Dixon, Dunbar, & DAK (1994)

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Unitarity-Based Calculations In general, work in D=4-2   full answer van Neerven (1986): dispersion relations converge At one loop in D=4 for SUSY  full answer Merge channels rather than blindly summing: find function w/given cuts in all channels

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 The Three Roles of Dimensional Regularization Ultraviolet regulator; Infrared regulator; Handle on rational terms. Dimensional regularization effectively removes the ultraviolet divergence, rendering integrals convergent, and so removing the need for a subtraction in the dispersion relation Pedestrian viewpoint: dimensionally, there is always a factor of (–s) – , so at higher order in , even rational terms will have a factor of ln(–s), which has a discontinuity

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Integral Reductions At one loop, all n  5-point amplitudes in a massless theory can be written in terms of nine different types of scalar integrals: boxes (one-mass, ‘easy’ two-mass, ‘hard’ two-mass, three-mass, and four-mass); triangles (one-mass, two-mass, and three-mass); bubbles In an N =4 supersymmetric theory, only boxes are needed.

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008

The Easy Two-Mass Box

On-Shell Methods in Gauge Theory, Taiwan Summer Institute ( 溪頭 ), Aug 10–17, 2008 Infrared Singularities Loop momentum nearly on shell and soft or collinear with massless external leg or both Coefficients of infrared poles and double poles must be proportional to the tree amplitude for cancellations to happen