The student will demonstrate an understanding of how scientific inquiry and technological design, including mathematical analysis, can be used appropriately.

Slides:



Advertisements
Similar presentations
Chapter 2 The Process of Experimentation
Advertisements

Animal, Plant & Soil Science
Experiments and Variables
Science Fair Project 2015.
FCAT Review The Nature of Science
PSC CHAP. 1 ABOUT SCIENCE. Basics Methods of Science.
The Methods of Science Science Standards Covered PS – 1.1 Generate hypotheses on the basis of credible, accurate, and relevant sources of scientific.
What is Science?.  Science = Latin “to know” Inquiry is at the heart of science.  Inquiry: search for information and explanation Two main processes:
Big Idea 1: The Practice of Science Description A: Scientific inquiry is a multifaceted activity; the processes of science include the formulation of scientifically.
Science & Technology: Chapter 1 Section 2
Chapter 2 Section 1. Objectives Be able to define: science, scientific method, system, research, hypothesis, experiment, analysis, model, theory, variable,
The Scientific Attitude. Accuracy and Precision Accuracy occurs when your experimental data very closely agrees with the known value. If your value is.
THE SCIENTIFIC METHOD. What is Scientific Inquiry? SCIENCE  Science assumes the natural world is  Consistent  Predictable  Goals of science are 
THE SCIENTIFIC METHOD. What is Scientific Inquiry? SCIENCE  Science assumes the natural world is  Consistent  Predictable  Goals of science are 
Scientific Inquiry & Skills
1 Science as a Process Chapter 1 Section 2. 2 Objectives  Explain how science is different from other forms of human endeavor.  Identify the steps that.
Scientific Inquiry.
SCIENTIFIC INQUIRY Cornell Notes.
Earth Science with Mr. Smith. What is Science?  Science is a process that uses observations and investigation to gain knowledge about events in nature.
Scientific Processes Mrs. Parnell. What is Science? The goal of science is to investigate and understand the natural world, to explain events in the natural.
Unit: Science & Technology Lesson #3 Scientific Inquiry Essential Question: What is scientific inquiry? How do you design and conduct an experiment? What.
EXPERIMENTAL DESIGN Science answers questions with experiments.
What is Science?. Competency Goal 1: The learner will design and conduct investigations to demonstrate an understanding of scientific inquiry.. –1.03.
Unit 1 Lesson 3 Scientific Investigations Copyright © Houghton Mifflin Harcourt Publishing Company.
The Scientific Method.
Scientific Method. Scientific Theory A theory is an explanation of a set of related observations or events supported by proven experiments and verified.
Scientific Methods and Terminology. Scientific methods are The most reliable means to ensure that experiments produce reliable information in response.
Review of the Scientific Method Chapter 1. Scientific Method – –Organized, logical approach to scientific research. Not a list of rules, but a general.
The Scientific Method. UNIT OBJECTIVES 1. Define the concept of science as a process. 2. List the steps of the scientific method 3. Determine type of.
Science as a Process Designing Experiments See also SaP Google PresentationSaP Google Presentation.
ESS. THE SCIENTIFIC METHOD “The strongest arguments prove nothing so long as the conclusions are not verified by experience. Experimental science is the.
Methods of Scientific Inquiry Ch 1.3 Course Overview.
Scientific Method 1.Observe 2.Ask a question 3.Form a hypothesis 4.Test hypothesis (experiment) 5.Record and analyze data 6.Form a conclusion 7.Repeat.
The World of Life Science
1.3: Scientific Thinking & Processes Key concept: Science is a way of thinking, questioning, and gathering evidence.
Chapter 1 What is Biology? 1.1 Science and the Natural World.
Scientific Methodology Vodcast 1.1 Unit 1: Introduction to Biology.
Research Methods in Psychology Introduction to Psychology.
Scientific Inquiry. The Scientific Process Scientific Process = Scientific Inquiry.
What is Science? Science comes from the Latin word “scire”
Unit 1 Scientific Investigation, Lab Reports, Units, Conversions, Scientific Notation, Dimensional Analysis, Accuracy, Precision, Significant Digits Generate.
Biology Chapter 1 The Study of Life. 1.2 Methods of Biology All sciences use what is called the scientific method to investigate natural phenomenon All.
Why is there a need for a standard system of measurement? People in the world need to be able to agree on specific quantities.
The Scientific Method Problem Solving for Science Detectives.
Unit 1 Lesson 3 Scientific Investigations
Scientific Method.
A method by which natural phenomena are explained
BIOLOGY NOTES SCIENTIFIC METHODS PART 2 PAGES 13-18
Scientific Thinking and Processes
EOC Review – Day 1 Standard #1: Scientific Inquiry
HB 1.A.4 through HB 1.A.8.
Scientific Method.
The Scientific Method.
SCIENTIFIC PROBLEM SOLVING
BIOLOGY NOTES SCIENTIFIC METHODS PART 2 PAGES 13-18
Scientific Method.
How will discussion days/note taking work in science class this year?
What is Science?.
Scientific Inquiry Standard B – 1.1.
The Scientific Method.
Scientific Inquiry Standard B – 1.1.
What is Science?.
A Process Used by Scientists (and everyone else) to solve a problem
What is Science?.
BIOLOGY NOTES SCIENTIFIC METHODS PART 2 PAGES 13-18
Life Science Ch 1 the World of Science.
Biological Science Applications in Agriculture
What is Science?.
Hosted by Mrs. Joshu.
Nature of Science “Science is a particular way of knowing about the world. In science, explanations are limited to those based on observations and experiments.
Presentation transcript:

The student will demonstrate an understanding of how scientific inquiry and technological design, including mathematical analysis, can be used appropriately to pose questions, seek answers, and develop solutions.

 A hypothesis is a reasonable explanation of an observation or experimental result or a possible answer to a scientific question that can be tested.  The hypothesis may or may not be supported by the experimental results.  It is often stated in terms of an independent and a dependent variable—or a “cause/effect relationship.”

 Examples of hypotheses might include: o If a leaf has a greater surface area, then the rate at which it produces oxygen may increase. o As the volume of the lungs increases, the rate at which breathing occurs decreases. o At warmer temperatures, mold will grow faster on bread

 Results of an experiment cannot prove that a hypothesis is correct. Results support or do not support the hypothesis.  Valuable information is gained even when the hypothesis is not supported by the results.  When hypotheses are tested over and over again and not contradicted, they may become known as theories, laws. or principles.  Resources should be:credible (trustworthy), accurate (correct – based on supported data), and relevant (on topic)

 B1.2 Use appropriate laboratory apparatuses, technology, and techniques safely and accurately when conducting a scientific investigation.

Use aTo measureIn these units Ruler/meter stickLengthMeters Graduated cylinderLiquid volumeliters BalanceMassGrams ThermometerTemperatureDegrees Celcius/Kelvin ScaleWeightnewtons

 You should be able to recognize safe laboratory practices.  Name some laboratory safety rules on your review sheet.

 B1.3  Use scientific instruments to record measurement data in appropriate metric units that reflect the precision and accuracy of each particular instrument.

 Remember the metric units in order and be able to convert them.  Give the mnemonic for metric units.

 The more decimals in the recorded measurement, the greater the precision of the instrument.  o A 100 mL graduated cylinder that is marked in 1 mL increments can be read exactly to the ones place with the tenths place being estimated in the recorded measurement.  o A 10 mL graduated cylinder that is marked in 0.1 mL increments can be read exactly to the tenths place with the hundredths place being estimated in the recorded measurement.  o Which is more precise?

 The terms precision and accuracy are widely used in any scientific work where quantitative measurements are made.  o Precision is a measure of the degree to which measurements made in the same way agree with one another.  o The accuracy of a result is the degree to which the experimental value agrees with the true or accepted value.  o Can you have a high degree of precision with poor accuracy?

 B1.4 Design a scientific investigation with appropriate methods of control to test a hypothesis (including independent and dependent variables), and evaluate the designs of sample investigations.

 A controlled scientific investigation is one in which one variable at a time is deliberately changed and the effect on another variable is observed while holding all other variables constant.  The independent variable is the variable that the experimenter deliberately changes or manipulates in an investigation.  The dependent variable is the variable that changes in an investigation in response to changes in the independent variable.

 Stating the purpose in the form of a testable question or problem statement  Researching information related to the investigation  Stating the hypothesis  Describing the experimental process  Recording, organizing and analyzing data  Stating a conclusion statement that describes if the data support or not support the hypothesis  Scientific investigations are designed to answer a question about the relationship between the variables.

 Writing the procedure includes the following considerations: ◦ Planning for independent and dependent variables with repeated trials ◦ Planning for factors that should be held constant (controlled variables) ◦ Setting up the sequence of steps to be followed ◦ Listing materials

 Data can be organized in CHARTS or GRAPHS.

Data should be organized in charts or data tables which list the values for the independent variable in the first column and list the values for the dependent variable in a column to the right of the independent variable The control or “normal treatment” should be listed on the top line.

Graphs can be used to determine a relationship between the dependent and independent variables. The independent variable plotted on the “X” axis and the dependent variable plotted on the “Y” axis. Label each axis with the name of the variable and the unit of measure and use equal increments.

 A scientific model is an idealized description of how phenomena occur and how data or events are related.  A model is used so a concept may be more easily understood and predictions can be made.  o The model of the atom helps us understand the composition, structure, and behavior of atoms.  o No model is ever a perfect representation of the actual concept or system. Models may change over time as scientific knowledge advances.

 The hypothesis is a prediction about the relationship between an independent and dependent variable with all other variables being held constant.  Results of a controlled investigation will either refute the hypothesis or verify it by supporting the hypothesis. ◦ If the data is consistent with the prediction in the hypothesis, the hypothesis is supported. ◦ If the data is not consistent with the prediction in the hypothesis, the hypothesis is refuted.

 A hypothesis is still always tentative and subject to further investigation.  Laws and theories may need revision as new scientific evidence is found with improved technology, advanced scientific knowledge, and more controlled scientific investigations based on these.

 Evaluate experiments by assessing If the steps of the investigation are presented. Whether independent and dependent variables are appropriate for testing the hypothesis; Whether only one variable is changed at a time Which variables are, or should have been, controlled; Whether data was collected with adequate repeated trials, organized and analyzed properly; Whether the conclusion is logical based on the analysis of collected data.

Technological designs or products are produced by the application of scientific knowledge to meet specific needs of humans. The field of engineering focuses on these processes.

There are four stages of technological design: Problem identification -- A problem or need is identified A solution is designed to meet the need or solve the problem identified. Implementation -- The solution or product is developed and tested. Evaluation -- The results of the implementation are analyzed to determine how well the solution or product successfully solved the problem or met the need.

Science is a process of inquiry that searches for relationships that explain and predict the physical, living and designed world. Technology is the application of scientific discoveries to meet human needs and goals through the development of products and processes. The field of engineering is responsible for technological designs or products by applying science to make products or design processes that meet specific needs of mankind.

 Technology is the application of scientific discoveries to meet human needs and goals through the development of products and processes. While the processes of scientific investigation are followed to determine the relationship between an independent and dependent variable, processes of technological design are followed to design products or processes to meet specified needs.

The process of controlled scientific investigations: Asks questions about the natural world; Forms hypotheses to suggest a relationship between dependent and independent variables; Investigates the relationships between the dependent and independent variables; Analyzes the data from investigations and draws conclusions as to whether or not the hypothesis was supported.