1 Cluster Models P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium.

Slides:



Advertisements
Similar presentations
A brief introduction D S Judson. Kinetic Energy Interactions between of nucleons i th and j th nucleons The wavefunction of a nucleus composed of A nucleons.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Spectroscopy at the Particle Threshold H. Lenske 1.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
1.Introduction 2.Exotic properties of K nuclei 3.To go forward (Future plan) 4.Summary Dense K nuclei - To go forward - KEK Nuclear KEK, ’06.Aug.3.
Pairing & low-lying continuum states in 6He Lorenzo Fortunato Dip. Fisica e Astronomia «G.Galilei», University of Padova & I.N.F.N. – Sez. di Padova 1.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
Lawrence Livermore National Laboratory Ab initio many-body calculations of nucleon scattering on light nuclei LLNL-PRES Lawrence Livermore National.
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
What are we doing? Large-scale ab initio No-core Shell Model calculations.
fb19 nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction 1.Motivation 2.Quark-model baryon-baryon interaction fss2.
Single Particle Energies
Possibilities for Nuclear Physics at the Madrid Tandem Hans O. U. Fynbo Department of Physics and Astronomy University of Aarhus, Denmark Nuclear physics.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
The R-matrix method and 12 C(  ) 16 O Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium 1.Introduction 2.The R-matrix formulation:
Ab initio No-Core Shell Model with the continuum of 3 H(d,n) 4 He fusion reaction Guillaume Hupin FUSTIPEN, March 19 th Collaborators: S. Quaglioni.
Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium The 12 C(  ) 16 O reaction: dreams and nightmares theoretical introduction.
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail:
Hydrogen molecular ion in a strong magnetic field by the Lagrange-mesh method Cocoyoc, February 2007 Daniel Baye Université Libre de Bruxelles, Belgium.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
1 Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium R-matrix theory of nuclear reactions 1.Introduction 2.General collision theory:
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Hypernucleus In A Two Frequency Model Yiharn Tzeng, S.Y.Tsay Tzeng, T.T.S.Kuo.
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Structure of neutron-rich Λ hypernuclei E. Hiyama (RIKEN)
1 A microscopic version of CDCC P. Descouvemont Université Libre de Bruxelles, Belgium In collaboration with M.S. Hussein (USP) E.C. Pinilla (ULB) J. Grineviciute.
Auxiliary Field Diffusion Monte Carlo study of symmetric nuclear matter S. Gandolfi Dipartimento di Fisica and INFN, Università di Trento I Povo,
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Nucleosynthesis in AGB Stars: the Role of the 18 O(p,  ) 15 N Reaction Marco La Cognata.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
THEORETICAL PREDICTIONS OF THERMONUCLEAR RATES P. Descouvemont 1.Reactions in astrophysics 2.Overview of different models 3.The R-matrix method 4.Application.
Breakup of 22 C in a three-body model E. C. Pinilla 1, and P. Descouvemont 2 1 Universidad Nacional de Colombia, Bogotá, Colombia 2 Université Libre de.
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Extracting ANCs from elastic scattering data O. L. Ramírez Suárez and J-M. Sparenberg and
Adiabatic hyperspherical study of triatomic helium systems
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
Theoretical Study of the 4 He(γ,n) 3 He and 4 He(γ,p) 3 H reactions The 22 nd European Conference on Few-Body Problems in Physics Krakow Nir.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
INTRODUCTION TO NUCLEAR LATTICE EFFECTIVE FIELD THEORY Young-Ho Song (RISP, Institute for Basic Science) RI meeting, Daejeon,
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Description of nuclear structures in light nuclei with Brueckner-AMD
Two-body force in three-body system: a case of (d,p) reactions
Open quantum systems.
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Theoretical study of the direct
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Presentation transcript:

1 Cluster Models P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1.Evidences for clustering 2.Cluster models: non-microscopic (nucleus-nucleus interaction) microscopic (NN interaction) continuum states 3.Application 1 : 5 H and 5 He (microscopic 3 body) 4.Application 2 : triple  process (non-microscopic) 5.Application 3: 18 F(p,  ) 15 O (reaction, microscopic 2 body) 6.Conclusions

2 Introduction Clustering: well known effect in light nuclei Nucleons are grouped in “clusters” Best candidate:  particle (high binding energy, almost elementary particle)  Ikeda diagram: cluster states near  threshold ( 8 Be, 20 Ne, etc Halo nuclei: special case of cluster states Beyond the nucleon level: hypernuclei quarks etc.

3 1. Evidence for clustering Large distance between the clusters  wave function important at large distances Example :  + 16 O Comparison of radii:  ~1.4 fm, 16 O~2.7 fm For 20 Ne 0 + : 1/2 =3.9 fmFor 20 Ne 1 - : 1/2 =5.6 fm 20 Ne  + 16 O cluster Non-cluster

4 Evidence for clustering Large reduced width Defines the reduced width  2 (P l =penetration factor)  W 2 =Wigner limit=3  2 /2ma 2 8 Be:  cluster states  2 (  )= 0.40  2 (  )= Li:  cluster states and neutron cluster states  2 (  )=0.52  2 ( n )=0  2 (  )=0.01  2 ( n )=0.26

5 Evidence for clustering Exotic cluster structure: 6 He+ 6 He in 12 Be M. Freer et al, Phys. Rev. Lett. 82 (1999) 1383 Particular cluster structure: halo nuclei: 11 Be= 10 Be+n 6 He=  +n+n neutron=simplest cluster Rotational band: E(J)=E 0 +  2 J(J+1)/2mR 2 With R=distance  estimate Calculation: P.D., D. Baye, Phys. Lett. B505 (2001) 71 Mixing of 6 He+ 6 He and  + 8 He

6 Cluster models vs ab initio models cluster models: assume a cluster structure  effective nucleon-nucleon interaction  direct access to continuum states microscopic (full antisymmetrization, depend on all nucleons) non microscopic (nucleus-nucleus interaction) semi-microscopic (approximate treatment of antisymmetrization) ab initio models: more general try to determine a cluster structure realistic nucleon-nucleon interaction Antisymmetrized Molecular Dynamics (AMD) Fermionic Molecular Dynamics (FMD) No Core Shell Model (NCSM) Green’s Function Monte Carlo Etc…

7 2. Cluster Models Several variants Non microscopic  2 clusters nucleus-nucleus interaction  3 clusters Microscopic:  2 clusters nucleon-nucleon interaction  3 clusters r y x y x r

8 Cluster Models 2-cluster models General description Microscopic approach: The generator coordinate method (GCM) Continuum states: the R-matrix method 3-cluster models Hyperspherical coordinates General description

9 2-body models Microscopic (+cluster approx.) RGM, GCM r Non-microscopic: 2 particles without structure = potential model r ex: , p+ 16 O, etc.  1,  2 =internal wave functions Solved by the GCM ex: 12 C+ , 18 F+p, etc.

10 The wave functions are expanded on a gaussian basis 1. potential model (non microscopic) Schrödinger equation: Expansion:  r=quantal relative coordinate R n =generator coordinate (variational calculation) The Generator Coordinate Method (GCM) for 2 clusters

11 2. Microscopic Slater Determinants  matrix elements between Slater determinants (projection numerical)  can be extended to 3-clusters The Generator Coordinate Method (GCM) for 2 clusters  the basis functions are projected Slater determinants (b 1 =b 2 =b)  variational calculation needs matrix elements GCM expansion RGM notation GCM notation

12 Continuum states Necessary for reactions Exotic nuclei: low Q value  continuum important Simple for 2 clusters, difficult for 3 clusters Various methods: Exact: calculation of the phase shift Approximations: Complex scaling, Analytic continuation (ACCC), box, etc. (in general, only resonances) Use of the R-matrix method: the space is divided into 2 regions (radius a) Internal: r ≤ a: Nuclear + coulomb interactions : antisymetrization important External: r > a: Coulomb only : antisymetrization negligible

13 The R-matrix method: phase-shift calculation 2 body calculations (spins zero) Internal wave function: combination of Slater determinants External wave function: Coulomb (U l =collision matrix) Bloch-Schrödinger equation: With L = Bloch operator restore the hermiticity of H over the internal region) ensures

14 The R-matrix method: phase-shift calculation Solution of the Bloch-Schrödinger equation: R-matrix equations  N+1 unknown quatities (U l, f l (R n )), N+1 equations  <> I =matrix element over the internal region  stability with the channel radius a is a strong test

15 3-body models: Hyperspherical coordinates y1y1 x1x1 Jacobi coordinates x 1, y 1 3 sets (x i, y i ), i=1,2,3 Hyperspherical coordinates: 6 coordinates Hamiltonian:

16 Kinetic energy With K 2 (  ) = angular operator (equivalent to L 2 in two-body systems) Eigenfunctions: =hyperspherical harmonics Eigenvalues : K(K+4) With l x, l y = angular momenta associated with x, y K = hypermoment  K (  ) = Jacobi polynomial Spin: with S = total spin

17 Schrödinger equation  JM  is expanded over the hyperspherical harmonics To be determinedKnown functions hyperspherical harmonics  =l x,l y,L,S Set of equations for Truncation at K = K max Can be extended to 4-body, 5-body, etc… lyly lxlx

18 Hamiltonian Three-body Models y1y1 x1x1 Non microscopic Microscopic Hamiltonian: r R V ij =nucleus-nucleus interaction Problems with forbidden states Ex: 6 He=  +n+n 12 C=  14 Be= 12 Be+n+n V ij =nucleon-nucleon interaction Ex: 6 He=  +n+n 5 H=t+n+n Projection: 7-dim integrals

19 3. Application to 5 H and 5 He A. Adahchour and P.D., Nucl. Phys. A 813 (2008) Introduction 5 H unbound, with N/Z=4: very large value Expected 3-body structure: 3 H+n+n Many works:experiment theory Difficult for theory and experiment (unbound AND 3-body structure)  still large uncertainties on ground state (Energy, width) level scheme? Isospin symmetry  expected 5 He(T=3/2) analog states (suggested by Ter-Akopian et al., EPJ A25 (2005) 315)

20 Application to 5 H and 5 He 3.2 Conditions of the calculation: microscopic 3-cluster NN interaction: Minnesota H=H 0 +u*V (u=admixture parameter in the Minnesota interaction: u~1) From 3 He+p: u= He+p 3 H+n

21 Application to 5 H and 5 He 5 H= 3 H+n+n T z =3/2,T=3/2 3H3H n n 5 He= 3 He+n+n coupled with 3 H+n+p T z =1/2, T=1/2,3/2 3 He n n 3H3H p n  Cluster structure: Main difficulty: unbound states  need for specific methods: ACCC x y

22 Application to 5 H and 5 He 3.3 Analytic Continuation in the Coupling Constant (ACCC) [V.I. Kukulin et al., J. Phys. A 10 (1977) 33] Write H as H=H 0 + V ( =1 is the physical value, E( =1)>0  unbound state) Determine 0 such as E( 0 )=0 For > 0 : E( )<0  bound-state calculation > 0 : x real, k imaginary, E real <0 < 0: x imaginary, k complex, E=k 2 =E R -i  /2  the width can be computed Choose M+N+1 values > 0  determine c i,d j Use =1  k complex  Main problem: stability!   1 Padé approximant

23 Application to 5 H and 5 He(T=3/2) 3 H+n+p 3 He+n+n T=3/2 state?? 3-body decay:  +n and t+d forb. 5 H, 5 He 5H5H 5 He T=1/2 states:  +n structure 3 H+n+n 4 He+n

24 Application to 5 H and 5 He(T=3/2) 5H5H  i (  ) expanded in gaussians centred at R = Generator Coordinate Method Energy curves E(R): eigenvalue for a fixed R value Convergence with K max Different J values Microscopic wave function:  1/2 + expected to be g.s.  fast convergence

25 3. Results for 5 H and 5 He(T=3/2) Application of the ACCC method  search for resonance energies and widths  test of the stability with N (Padé approximant) E r ~ 2 MeV  ~ 0.6 MeV  “theoretical” uncertainties

26 3. Results for 5 H and 5 He(T=3/2) 5 He Weak coulomb effects: essentially threshold Energy curves

27 3. Results for 5 H and 5 He(T=3/2) Th.[1]: N.B. Shul’gina et al., Phys. Rev. C 62 (2000) Th.[2]: P.D. and A. Kharbach, Phys. Rev. C 63 (2001) Th.[3]: K. Arai, Phys. Rev. C 68 (2003) Th.[4]: J. Broeckhove et al., J. Phys. G. 34 (2007) 1955 Exp.[1]: A.A. Korsheninnikov et al., PRL 87 (2001) Exp.[2] M.S. Golovkov et al., PRL 93 (2004)  broad state in 5 He:E x ~21.3 MeV  ~1 MeV

28 4. Application to 12 C Well known poorly known Main issues: Simultaneous description of  scattering and of 12 C? Bose-Einstein condensate? Astrophysics (Triple-  process, Hoyle state + others?)  Two approaches Microscopic theory Non microscopic theory  3  continuum states?

29 4. Application to 12 C a.Microscopic models 1)RGM: M. Kamimura (Nucl. Phys.A 351 (1981) 456) : form factors of 12 C 2)GCM: E. Uegaki et al., PTP62 (1979) 1621: triangle structure of 12 C P.D., D.Baye, [Phys. Rev. C36 (1987) 54]: 8 Be+  model 8 Be(  ) 12 C S factor 2 + resonance (with the 0 2 state as bandhead) 3)GCM + hyperspherical formalism  M. Theeten et al., Phys. Rev. C 76 (2007) Only 12 C spectroscopy (energies, B(E2), densities)

30 12 C energy curves 12 C Energy spectrum  phase shifts GCMexp 12 C microscopic

31 Application to 12 C B. Non-Microscopic model   scattering well described by different potentials –deep potentials (Buck potential) –shallow potentials (Ali-Bodmer potentials)  we may expect a good description of the 3  system  Removal of  forbidden states: projection method (V. Kukulin) supersymmetric transformation (D. Baye) Buck potential (Nucl. Phys. A275 (1977) 246) V= exp(-(r/2.13) 2 ) deep l independent Others:  phase shifts have a similar quality

32 ABD0ABBuck+sup x Buck+ projexp C spectrum, J=0 +  no satisfactory potential!! Ali-Bodmer potential (shallow) Buck potential (deep)

33 Calculation of 3  phase shifts: Need for appropriate  potentials (3  potentials?) Derivation of  potentials –from RGM kernels (non local) M. Theeten et al., PRC 76 (2007) Y. Suzuki et al., Phys. Lett. B659 (2008) 160 –Fish-bone model: reproduces  and  Z. Papp and S. Moszkowski, Mod. Phys. Lett. 22 (2008) 2201 Non local potentials  difficult for 3-body continuum states Microscopic approach to 3-body continuum states? In progress for  +n+n Application to 12 C

34 5. Application to 18 F(p,  ) 15 O Ref.: M. Dufour and P.D., Nucl. Phys. A785 (2007) 381  Microscopic cluster calculation (19-nucleon system)  High level density  limit of applicability  Questions to address: Spectroscopy of 19 F and 19 Ne (essentially J=1/2 +,3/2 + : s waves) 18 F(p,  ) 15 O S-factor How to improve the current status on 18 F(p,  ) 15 O? 19 F 19 Ne 18 F+n 18 F+p Very important for novae Many experimental works: Direct ( 18 F beam) Indirect (spectroscopy of 19 Ne) 2 recent experiments

35 Application to 18 F(p,  ) 15 O NN interaction: modified Volkov (reproduces the Q value) + spin-orbit Multichannel:p+ 18 F  + 15 O n+ 18 Ne Shell model space: sd shell for 18 F, 18 Ne, p shell for 15 O  18 F: J=1 + (x7), 0 + (x3), 2 + (x8), 3 + (x6), 4 + (x3), 5 + (x1) 15 O : J=1/2 -, 3/ Ne: J=0 + (x3), 1 + (x2), 2 + (x5), 3 + (x2), 4 + (x2)  many configurations Spectroscopy of 19 Ne and continuum states (R-matrix theory) At low energies (below the Coulomb barrier), s waves are dominant  J=1/2+ and 3/2+

Ne 19 F F Ne Theory Experiment J=3/2 +  + 15 O  + O  + N  + N p+ 18 F n+ 18 F n+ 18 F p+ 18 F E cm ( 19 F) E cm ( 19 Ne) p+ 18 O p+ 18 O Fitted (NN int)

37 E cm ( 19 Ne) Near threshold ? 00 (5.34)  + 15 O  + O  + N  + N p+ 18 F p+ 18 F n+ 18 Fn+ 18 F Theory Experiment 19 Ne 19 F F Ne J=1/2 + ( no parameter) E cm ( 19 F) p+ 18 O p+ 18 O

38 Microscopic 18 F(p,  ) 15 O S factor 1/2 + = s wave  important down to low energies  (constructive) interference with the subthreshold state

39 Drawbacks of the model: Some 3/2 + resonances missing 1/2 + properties not exact (in 19 F, unknown in 19 Ne) R matrix: allows to add resonances (3/2 + ) or to modify their properties (1/2 + ) n+ 18 F Theoryexp. 19 F, J=1/2+  modified 19 Ne spectrum J=1/  + 15 O p+ 18 F 19 Ne E cm (MeV) known in 19 F unknown in 19 Ne  prediction of two 1/2+ states:E=-0.41 MeV,  =231 keV E= 1.49 MeV,  =296 keV,  p /  =0.53

40 18 F(p,  ) 15 O S factor Consistent with experiment Uncertainties due to 3/2 + strongly reduced near 0.2 MeV (1/2 + dominant) 3/2+ resonances: interferences?

41 Two recent experiments J.-C. Dalouzy et al: Ganil + LLN, Ref: Phys. Rev. Lett. 102, (2009) 19 Ne+p  19 Ne*+p  18 F+p+p  evidence for a broad 1/2+ peak (E) near E cm =1.45 MeV,  =292  107 keV Cluster calculation E cm =1.49 MeV,  =296 keV 18 F+p 19 Ne

42 A.C. Murphy et al: Edinburgh + TRIUMF (radioactive 18 F beam): Phys. Rev. C79 (2009) Simultaneous measurement of 18 F(p,p) 18 F and 18 F(p,  ) 15 O cross sections R-matrix analysis  many resonances  no evidence for a 1/2 + resonance (E too low?) 18 F(p,p) 18 F 18 F(p,  ) 15 O E cm (MeV) d  /d  (mb/sr)

43 6. Conclusions 1.Cluster models Different variants:microscopic semi-microscopic non microscopic Continuum accessible (R-matrix) 2. 5 H, 5 He(T=3/2) 5 H: resaonable agreement with other works 5 He (T=3/2): analog state of 5 H above 3 H+n+p threshold  E x ~21.3 MeV,  ~1 MeV C Impossible to reproduce 2  and 3  simultaneously (all models) 3  continuum: future microscopic studies possible (  +n+n in progress) F(p,  ) 15 O The GCM predicts a 1/2 + resonance (s wave) near the 18 F+p threshold Observed in an indirect experiment Not observed in a direct experiment