APK 5-MINUTE CHECK. 11.4 CIRCUMFERENCE AND ARC LENGTH.

Slides:



Advertisements
Similar presentations
11.4 Circumference and Arc Length
Advertisements

Warm-Up Exercises Simplify the expression. ANSWER 1 8 3π3π (9π)
EXAMPLE 5 Find arc lengths to find distance TRACK The curves at the ends of the track shown are 180° arcs of circles. The radius of the arc for a runner.
Geometry 11.4 Circumference and Arc Length. July 2, 2015Geometry 11.4 Circumference and Arc Length2 Goals  Find the circumference of a circle.  Find.
How do I find the surface area and volume of a sphere?
EXAMPLE 1 Use the formula for circumference Find the indicated measures. Write circumference formula. Substitute 9 for r. Simplify. Use a calculator. =
TODAY IN GEOMETRY…  Warm up: Writing equations of a circle  Learning Target : 11.4 You will find the arc length and circumferences of circles  Independent.
EXAMPLE 1 Use the formula for circumference Find the indicated measures. Write circumference formula. Substitute 9 for r. Simplify. Use a calculator. =
Circumference & Arc Length. Circumference The distance around a circle C = 2r or d.
11.4: Circumference and Arc Length Objectives: Develop and apply the equation for the circumference of a circle Determine arc length of a circle Common.
Circumference and Arc Length
Degrees, Minutes, Seconds
7.6: Circles and Arcs Objectives:
MM2G3 Students will understand properties of circles. MM2G3 c Use the properties of circles to solve problems involving the length of an arc and the area.
MM2G3 Students will understand properties of circles. MM2G3 c Use the properties of circles to solve problems involving the length of an arc and the area.
6.1.2 Angles. Converting to degrees Angles in radian measure do not always convert to angles in degrees without decimals, we must convert the decimal.
Radian Measure of a Circle
Q1 of 36 Solve for x. Round to the nearest hundredths.  20 x 16.
6.7Circumference and Arc Length Theorem 6.19 The circumference C of a circle is C = ____ or C = _____, where d is the diameter of the circle and r is.
A circle is a closed curve in a plane. All of its points are an equal distance from its center.
Warm up: Solve for x 18 ◦ 1.) x 124 ◦ 70 ◦ x 2.) 3.) x 260 ◦ 20 ◦ 110 ◦ x 4.)
6.7 Circumference & Arc Length p.224. Circumference Defn. – the distance around a circle. Thm – Circumference of a Circle – C = 2r or C = d *
11.4 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Circumference and Arc Length.
Use the formula for circumference
Warm-Up Find the area: Circumference and Area Circles.
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Section 5-3 Circumference and area of a circle 5.3 Circumferences and Areas of Circles.
Copyright © Cengage Learning. All rights reserved.
Warm up: Solve for x 18 ◦ 1.) x 124 ◦ 70 ◦ x 2.) 3.) x 260 ◦ 20 ◦ 110 ◦ x 4.)
Geometry Honors Section 5.3 Circumference and Area of Circles
Find the measure of each arc.
Geometry Warm Up CIRCLES AND ARCS Objective: To find the circumference and arc length.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 5.4.
Radian Measure of a Circle another way to measure angles!
Warm up: 1.A _______________ is the set of all points equidistant from a given point called the _______________. 2.A _______________ is a segment that.
Warm up: Solve for x 18 ◦ 1.) x 124 ◦ 70 ◦ x 2.) 3.) x 260 ◦ 20 ◦ 110 ◦ x 4.)
Geometry Honors Section 5.3 Circumference and Area of Circles.
11.4 Circumference and Arc Length
Circumference The distance around a circle or Find the circumference to the nearest tenth
EXAMPLE 1 Use the formula for circumference Find the indicated measures. Write circumference formula. Substitute 9 for r. Simplify. Use a calculator.
Circumference and Area of Circles Section 8.7. Goal Find the circumference and area of circles.
Unit 4: CIRCLES Topic 11: C IRCLE M EASUREMENTS Topic 12: T HEOREMS A BOUT C IRCLE.
© 2010 Pearson Prentice Hall. All rights reserved Circles § 7.7.
OBJ: SWBAT USE THE FORMULA FOR CIRCUMFERENCE, USE ARC LENGTHS TO FIND MEASURES AND SOLVE REAL-LIFE PROBLEMS Circumference and Arc Length.
CIRCLES AND CIRCUMFERENCE. CONTINUATION OF PI DAY In every circle, the ratio of the circumference to the diameter is equal to …… The Greek letter.
1)Find the circumference and area of a circle with a diamater of 10 in. Round to the nearest hundredth. Do not forget the units! 2) What would be the radius.
Geometry B Bellwork 1) Find the length of the apothem of a regular hexagon given a side length of 18 cm.
11.4 Circumference and Arc Length
Section 11.4 Circumference and Arc Length
11.1 Circumference and Arc Length 11.2 Areas of Circles and Sectors
2 Types of Answers Exact Rounded Use the Pi button on your calculator
11.4 Circumference and Arc Length
11.3 Sector Area and Arc Length (Part 1)
What you will learn How to find linear and angular velocity.
Circumference and Arc Length
Section 11.4 Circumference and Arc Length Theorem
10.4 and 10.9 Quick clicker check
11.4 Circumference and Arc Length
5.7 Circumference and Arc Length
Q1 of 28 The radius of a sphere is 3 ft. Find the surface area and round to the nearest tenth.
Geometry 11.1 Circumference and Arc Length
Circles and Arcs Skill 46.
11.1: Circumference and Arc Length
Sec Circumference and Arc Length p.649
Angles and Their Measure
NOTES 10.9 Circumference and Arc Lengths.
11.4 Circumference and Arc Length
Essential Questions: Standards:
Warm up: Solve for x 1.) 2.) 4.) 3.) 124◦ 70◦ x 18◦ x 260◦ x 20◦ 110◦
Presentation transcript:

APK 5-MINUTE CHECK

11.4 CIRCUMFERENCE AND ARC LENGTH

OBJECTIVES Find the circumference of a circle and the length of a circular arc. Why? So you can use circumference and arc length to solve real-life problems. Mastery is 80% or better on 5-minute checks and problems.

CONCEPT DEV - FINDING CIRCUMFERENCE & ARC LENGTH The circumference of a circle is the distance around the circle. For all circles, the ratio of the circumference to the diameter is the same. This ratio is known as  or pi.

CONCEPT DEV-THEOREM 11.8: CIRCUMFERENCE OF A CIRCLE The circumference C of a circle is C =  d or C = 2  r, where d is the diameter of the circle and r is the radius of the circle.

SKILL DEV - EX. 1: USING CIRCUMFERENCE Find (a) the circumference of a circle with radius 6 centimeters and (b) the radius of a circle with circumference 31 meters. Round decimal answers to two decimal places.

SOLUTION: C = 2  r = 2  6 = 12    So, the circumference is about cm. C = 2  r 31 = 2  r 31 = r 2  4.93  r  So, the radius is about 4.93 cm. a.b.

AND... An arc length is a portion of the circumference of a circle. You can use the measure of an arc (in degrees) to find its length (in linear units).

ARC LENGTH COROLLARY In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360 °. Arc length of 2r2r = 360 ° or Arc length of= 360 ° 2r 2r m m

MORE... The length of a semicircle is half the circumference, and the length of a 90° arc is one quarter of the circumference. ½ 2  r ¼ 2  r r r

EX. 2: FINDING ARC LENGTHS Find the length of each arc. 50 ° a. 50 ° b. 100 ° c.

EX. 2: FINDING ARC LENGTHS Find the length of each arc. 50 ° a. a. Arc length of = 50 ° 360 ° 2  (5) a. Arc length of = # of ° 360 ° 2  r  4.36 centimeters

EX. 2: FINDING ARC LENGTHS Find the length of each arc. 50 ° b. b. Arc length of = # of ° 360 ° 2  r b. Arc length of = 50 ° 360 ° 2  (7)  6.11 centimeters

EX. 2: FINDING ARC LENGTHS Find the length of each arc. 100 ° c. c. Arc length of = # of ° 360 ° 2  r c. Arc length of = 100 ° 360 ° 2  (7)  centimeters In parts (a) and (b) in Example 2, note that the arcs have the same measure but different lengths because the circumferences of the circles are not equal.

EX. 3: USING ARC LENGTHS Find the indicated measure. 60 ° a. circumference Arc length of 2r2r = m 360 ° r2r 6 1 = 2r2r 360° 60° = 3.82(6) = 2  r = 2  r C = 2  r; so using substitution, C = meters.

EX. 3: USING ARC LENGTHS Find the indicated measure. b. m Arc length of 2r2r = 360 ° 18 2  (7.64) 360° = 135 °  m m m 360 °  So the m  135 °

EX. 4: COMPARING CIRCUMFERENCES Tire Revolutions: Tires from two different automobiles are shown on the next slide. How many revolutions does each tire make while traveling 100 feet? Round decimal answers to one decimal place.

EX. 4: COMPARING CIRCUMFERENCES Reminder: C =  d or 2  r. Tire A has a diameter of (5.1), or 24.2 inches. Its circumference is  (24.2), or about inches.

EX. 4: COMPARING CIRCUMFERENCES Reminder: C =  d or 2  r. Tire B has a diameter of (5.25), or 25.5 inches. Its circumference is  (25.5), or about inches.

EX. 4: COMPARING CIRCUMFERENCES Divide the distance traveled by the tire circumference to find the number of revolutions made. First, convert 100 feet to 1200 inches. TIRE A: 100 ft in in in. = 100 ft in in in. =  15.8 revolutions TIRE B:  15.0 revolutions

EX. 5: FINDING ARC LENGTH Track. The track shown has six lanes. Each lane is 1.25 meters wide. There is 180° arc at the end of each track. The radii for the arcs in the first two lanes are given. a.Find the distance around Lane 1. b.Find the distance around Lane 2.

EX. 5: FINDING ARC LENGTH a.Find the distance around Lane 1.  The track is made up of two semicircles and two straight sections with length s. To find the total distance around each lane, find the sum of the lengths of each part. Round decimal answers to one decimal place.

EX. 5: LANE 1 Distance = 2s + 2  r 1 = 2(108.9) + 2  (29.00)  meters Distance = 2s + 2  r 2 = 2(108.9) + 2  (30.25)  meters Ex. 5: Lane 2

EXIT SLIPS What was the Objective for today? Students will analyze and determine arc lengths and other measures. Why? So you can find a running distance, as in example 5. Mastery is 80% or better on 5-min checks and practice problems.

HOMEWORK Page #3 – 28 ALL