Suppression of Ultra Relativistic Electron Radiation in a Thin Layer of Matter: Direct Manifestation of “Half-Bare” Particle Interaction S.P. Fomin, A.S.

Slides:



Advertisements
Similar presentations
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Advertisements

NA63 Electromagnetic processes in strong crystalline fields Status Report Ulrik I. Uggerhøj.
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
Quartz Plate Calorimeter Prototype Ugur Akgun The University of Iowa APS April 2006 Meeting Dallas, Texas.
Introducing Channeling Effect
January 23, 2001Physics 8411 Elastic Scattering of Electrons by Nuclei We want to consider the elastic scattering of electrons by nuclei to see (i) how.
Counting Cosmic Rays through the passage of matter By Edwin Antillon.
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I. Introduction II. Interaction Potential with Flow III. Flow Effects on Light Quark.
Particle Interactions
Recent results from CERN NA59 Richard Jones, University of Connecticut GlueX collaboration meetingMay , Bloomington Does the enhancement seen.
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Muhammad Ajaz PhD Scholar, 50th Course: WHAT WE WOULD LIKE LHC TO GIVE US June 27, 2012.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
Centre de Toulouse Radiation interaction with matter 1.
Interaction of light charged particles with matter Ionization losses – electron loss energy as it ionizes and excites atoms Scattering – scattering by.
CRYSTAL-BASED COLLIMATION SYSTEM AS AN ALTERNATIVE WAY TO SOLVE THE COLLIMATION PROBLEM FOR FUTURE HIGH ENERGY ACCELERATORS ALEXEI SYTOV Research Institute.
St. Petersburg State University. Department of Physics. Division of Computational Physics. COMPUTER SIMULATION OF CURRENT PRODUCED BY PULSE OF HARD RADIATION.
D. Toivonen, M. Tokarev JINR, Dubna Z-scaling & High- pT and cumulative particle production in pp and pA collisions at high energies Z XXXII International.
Lecture 1.3: Interaction of Radiation with Matter
Space Instrumentation. Definition How do we measure these particles? h p+p+ e-e- Device Signal Source.
Study of the Halo Nucleus 6 He using the 6 Li(   ) 6 He Reaction Derek Branford - Edinburgh University for the A2-Collaboration MAMI-B Mainz.
Yu.P. Kunashenko 1,2 1 Tomsk Polytechnic University 2 Tomsk State Pedagogical University Coherent Bremsstrahlung from planar channeled positron.
Graphic from poster by Sarah Lamb, UConn Honors Program event Frontiers in Undergraduate Research, April 2009 Collimator subtends
Alpha and Beta Interactions
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
and Accelerator Physics
Calorimeters Chapter 21 Chapter 2 Interactions of Charged Particles - With Focus on Electrons and Positrons -
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
50 th Anniversary Symposium on Nuclear Sizes and Shapes 23/06/08 Elizabeth Cunningham Does the passage of low energy deuterons through a finite 12 C foil.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
1 Yuri Shestakov Budker Institute of Nuclear Physics Novosibirsk, Russia Tagging system of almost-real photons for photonuclear experiments at VEPP-3 Moscow,
A.P. Potylitsyn, S.Yu. Gogolev
Particle Detectors for Colliders Robert S. Orr University of Toronto.
UCLA Positron Production Experiments at SABER Presented by Devon Johnson 3/15/06.
Radiation Shielding Assessment for MuCool Experimental Enclosure C. Johnstone 1), I. Rakhno 2) 1) Fermi National Accelerator Laboratory, Batavia, Illinois.
Experiments on strong field QED in crystals (CERN NA63) J.U. Andersen, H. Knudsen, S.P. Møller, A.H. Sørensen, E. Uggerhøj, U.I. Uggerhøj Department of.
The STAR Experiment Texas A&M University A. M. Hamed for the STAR collaboration 1 Quark Matter 2009 Knoxville, TN.
Radiation from electrons passing through helical undulator or colliding with circularly polarized laser wave V.Strakhovenko Budker Institute of Nuclear.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Tests of beam-beam effects with strong field QED experiments in crystals Ulrik I. Uggerhøj Department of Physics and Astronomy Aarhus University, Denmark.
Ultrarelativistic particles in matter Ulrik I. Uggerhøj (representing the Aarhus group) Department of Physics and Astronomy, Aarhus University, Denmark.
Testing Quantum Electrodynamics at critical background electromagnetic fields Antonino Di Piazza International Conference on Science and Technology for.
Elliptic Flow of Inclusive Photon Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio Oct. 22,
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
Experimental Research of the Diffraction and Vavilov-Cherenkov Radiation Generation in a Teflon Target M.V. Shevelev, G.A. Naumenko, A. P. Potylinsyn,
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Motivation Test of quantum mechanical calculations of synchrotron radiation. Relevant for linear colliders, astrophysical objects like magnetars, heavy.
Status: Structured target resonance Magnetic suppression
Polarization of final electrons/positrons during multiple Compton
12th Geant4 Space Users Workshop
S.V. Blazhevich1), I.V. Kolosova2), A.V. Noskov2)
New concept of light ion acceleration from low-density target
Channeling Studies at LNF:
N.F. Shul’ga Akhiezer Institute for Theoretical Physics,
Methods of Experimental Particle Physics
Coherent Bremsstrahlung from Fast Neutrons
The phenomena of spin rotation and depolarization of high-energy particles in bent and straight crystals at Large Hadron Collider (LHC) and Future Circular.
Wakefield Accelerator
Chapter 4 The Nuclear Atom.
Studies of Pear Shaped Nuclei using rare isotope beams
Photoproduction of vector mesons off nuclei with the GlueX detector
Polarized Positrons at Jefferson Lab
Beam-time, June 2009 Beam-time, Oct days of beam time
PLANNED EXPERIMENT ON INVESTIGATION OF ‘HALF-BARE’ ELECTRON TRANSITION RADIATION PROPERTIES ON 45-MeV CLIO FACILITY S. Trofymenko1,2), N.
N.F. Shul’ga Akhiezer Institute for Theoretical Physics,
Beam-time, June 2009 Beam-time, Oct days of beam time
Presentation transcript:

Suppression of Ultra Relativistic Electron Radiation in a Thin Layer of Matter: Direct Manifestation of “Half-Bare” Particle Interaction S.P. Fomin, A.S. Fomin and N.F. Shul’ga Akhiezer Institute for Theoretical Physics National Science Center “Kharkov Institute of Physics & Technology” Kharkov 61108, Ukraine ( IC New Trends in HEP Sept 2013 BITP, Alushta, Crimea

Overview: Introduction and motivation: Bremssrahlung at ultra high energy Multiple scattering effect on radiation: LPM effect Radiation in a thin layer of matter (SLAC exp E-146) TSF effect: theory and CERN experiment NA63 Spectral-angular distribution and polarization of γ-quanta at the non-dipole regime of radiation Future experiment suggestions

3 Coherence length (Ter-Mikaelian, 1953)

1934: Bethe-Heitler theory of Bremsstrahlung 1934: Bethe-Heitler theory of Bremsstrahlung H. Bethe and W. Heitler, Proc. Roy. Soc. A 146 (1934) 83., and if where is the Radiation length = f(Z,n), but not  !!! screening effect

Coherence Length amorphous media crystal

6 Cosmic ray M.Miesowicz, O.Stanisz, W.Wolther. Novo Cimento 5 (1957) 513. experiments: A.Varfolomeev et al. Sov. Phys. JETP 11 (1960) 23. Multiple Scattering Effect on Radiation in Amorphous Medium L. Landau and Ya. Pomeranchuk Dokl. Akad. Nauk SSSR 92 (1953) 735. A.B. Migdal, Dokl. Akad. Nauk SSSR 96 (1954) 49; JETP 32 (1957) 633.

7 LPM effect for very high energy LPM effect for very high energy F(x) = E’ LPM / E’ BH x = ω/ ε Increasing of Radiation length !!! GEANT, … Detector design and Radiation shielding calculation …

8 1994: SLAC experiment E-146

9 SLAC experiment E-146 Anthony P.L. et al., Phys. Rev. Lett. 75 (1995) Klein S., Rev. Mod. Phys. 71 (1999) Bethe-Heitler ? ? ? LPM effect, but T < l c and T > l c F.F. Ternovskii. JETP 12 (1961) 123.

10 Radiation in a thin layer of matter : 1978 Shul’ga N.F. and Fomin S.P., JETP Lett. 27 (1978)126; 1986 Fomin S.P. and Shul’ga N.F., Phys. Lett. A114 (1986)148. ; suppression of radiation

E.Feinberg, JETP 50 (1966) 202. S.P. Fomin, N.F. Shul’ga, Phys. Let. A 114 (1986) 148 A.I. Akhiezer, N.F. Shul’ga, Sov.Phys.Usp. 30 (1987) 197 Electromagnetic field of electron at scattering - retarded Liénard–Wiechert potential

13 Quantitative theory of radiation in a thin layer of matter Shul'ga N.F., Fomin S.P., JETP Lett. 63 (1996) 873; JETP 86 (1998) 32; NIM B145 (1998) 73. :,

14 Other publications on this subject : R. Blankenbacler, S.D. Drell. The Landau-Pomeranchuk-Migdal effect for finite targets. Phys.Rev. 1996, v. D53, p R. Blankenbacler. Structured targets and Landau-Pomeranchuk-Migdal Effect. Phys. Rev. 1997, v. D55, p B.G. Zhakharov. Structured targets and Landau-Pomeranchuk-Migdal effect for finite-size targets.JETP Lett. 1996, v. 64, p B.G. Zhakharov. Light-cone path integral approach to the Landau-Pomeranchuk-Migdal effect.Yadernaya Fiz. 1998, v. 61, p R.Baier, Yu.L.Dokshitser, A.H.Mueller, S.Peigne, D.Schiff. The Landau-Pomeranchuk- Migdal effect in QED.Nucl. Phys. 1996, v. B478, p V.N. Baier, V.M. Katkov. Landau-Pomeranchuk-Migdal effect and transition radiation in structured targets.Phys. Rev. 1999, v. D60, , 12 p.....

A.I. Akhiezer, N.F. Shul'ga, S.P. Fomin. The Landau-Pomeranchuk-Migdal Effect. Cambridge Scientific Publishers, Cambridge, UK, 2005, 215 p.

16 CERN NA63 experiment 2005 SPS secondary positron beam E = 178 GeV, target thickness: 2, 10, 20 μm

CERN NA63 experiment 2008 SPS secondary electron beam E = 206 & 234 GeV, target thickness: 5-10 μm

18 CERN NA63 experiment 2008

19 Thickness dependence !!! N. Shul'ga, S. Fomin: JETP Lett. 27(1978)126. Phys.Let.A 114(1986)148; JETP 86(1998)32  1 = 800 MeV  2 = 350 MeV  3 = 150 MeV  TSF = m 2 t / 2 ≈ 6.6 PeV ∙ t (сm)  TSF ≈ 2  2 /t If  <<  TSF : t ≈ l c (  )

June 5, 2009 Dear Nikolai and Serguei, It is a pleasure for me to tell you that in the CERN experiment we are we have confirmed the logarithmic thickness running these days, we have confirmed the logarithmic thickness dependence that your theory for thin targets has predicted dependence that your theory for thin targets has predicted, … … we are certain that the effect is there, and we thought we would let you we have 'seen' the 'half-bare' electron :-) know that we have 'seen' the 'half-bare' electron :-) Best regards from all of us at NA63, Ulrik Uggerhoj Spokesman of CERN NA63 collaboration Professor, Aarhus University, Denmark CERN experiment NA63 - June 2009

21 TSF Theory & CERN experiment NA63 June 2009 A.S.Fomin, S.P.Fomin, N.F.Sul’ga, Nuovo Cimento 34C (2011) 45. H.D.Thomsen et al., Phys. Rev. D 81 (2010)

BH, LPM and TSF theories applicability ranges Thickness dependence of radiation spectral density The cover picture from H.Thomsen PhD thesises

23 Angular Dirtribution of Radiation in Non-Dipole Case S.P. Fomin, N.F. Shul’ga, S.N. Shul’ga, Phys. Atom. Nucl. 66 (2003) 421

24 Fomin S.P., Shul’ga N.F., Shul’ga S.N., Yad.Fiz. 66 (2003) 421 Angular Dirtribution of Radiation in Non-Dipole Case θ y = 0 :,

Spectral-angular distribution of radiation in a thin amorphous target Spectral-angular distribution of radiation in a thin amorphous target Fomin S.P., Shul'ga N.F. and Shul'ga S.N., Phys. of Atomic Nuclei 66 (2003) 396.

Angular distribution of radiation in a thin amorphous target

27 Polarization matrix: Linear polarization: Circular polarization: for all observation angles ! where Polarization of Radiation at Non-Dipole Regime A.S. Fomin, S.P. Fomin, N.F. Shul'ga, Proc. SPIE, 5974 (2005) 177; 6634 (2007)

Multiple Scattering in Aligned Crystal

E e = 200 GeV W T = 20 μm ψ = ψ L   L = 35 Pc ~ 80% Electrons Polarization Polarization at Strong Non-Dipole Regime of Radiation A.S. Fomin, S.P. Fomin, N.F. Shul'ga, Proc. SPIE, 5974 (2005) 177; 6634 (2007)

Polarization in Crystalline and Amorphous Targets

Thank you for attention! Conclusion 1. 1.The effect of suppression of ultrarelativistic electron radiation due to a multiple scattering on atoms in a thin amorphous target (TSF effect) was finally confirmed in the CERN experiment NA63 by observation of logarithmic dependence of the radiation spectral density on the target thickness It is theoretically shown that this effect leads to essential changing not only spectral density of radiation, but also its angular distribution and polarization, that can be verified by future experiments in SLAC and CERN The TSF effect takes place also in a thin crystal at the coherent multiple scattering of an electron on the crystal atomic chains. This effect is planed for experimental study in CERN after SPS restart The analogous of the LPM and TSF effects have to take place in QCD at quark-gluon interaction.

CERN experiment NA63 (2005) CERN experiment NA63 (2005) Results of our calculations:

34 LPM and TSF effects in a crystal Shul’ga N., Fomin S., JETP Letters 27 (1978)126; Phys. Lett. A114 (1986)148. Laskin N., Mazmanishvili A., Shul’ga N., Phys. Lett. A112 (1985) 240. Multiple scattering on crystal atomic strings Shul’ga N., Truten’ V., Fomin S., J. Techn. Phys. 52 (1982) 2279.

35 CERN experiment: Bak J.F. et al. Nucl. Phys., B302 (1988) 525. Theory: Laskin N., Shul’ga N., Phys.Lett. A135 (1989) 147. e - : E=10 GeV e + : E=20 GeV

Lapko V.P., Nasonov N.N., NIM B 84 (1994) 48. Circular Polarization of Radiation in Non-Dipole Case

How relativistic electron emits photon? How relativistic electron emits photon? Force lines at rest and uniformly moving electric charge B.Bolotovsky and A. Serov, Sov. Phys. Usp. 179 (2009) 517.

R.Y. Tsien, AJP 40 (1972) 46 How relativistic electron emits photon? How relativistic electron emits photon? The own Coulomb fields of instantly started and immediately stopped charge

Как излучает релятивистский электрон? Как излучает релятивистский электрон? Поле вращающегося заряда с тангенсиальной скоростью  = 0.5 и  = 0.9 R.Y. Tsien, AJP 40 (1972) 46

Как излучает релятивистский электрон? Как излучает релятивистский электрон? Поле вращающегося заряда с тангенсиальной скоростью  = 0.95 и поле рассеянного на угол 5° заряда с  = R.Y. Tsien, AJP 40 (1972) 46

Как излучает релятивистский электрон? Как излучает релятивистский электрон? Поле дважды рассеянного заряда

42 CERN experiment NA63 June 2009 H.D.Thomsen et al.,“The distorted Coulomb field of the scattered electron” Phys. Rev. D 81 (2010) SPS secondary electron beam E = 149 GeV, Ta target thickness: μm; Ta target thickness: μm; hω = 0.2 – 3 GeV

43 TSF Theory & CERN experiment NA63 June 2009 Thickness dependence of radiation spectral density

Coherence Length (informal introduction) pre-wave zone wave zone