Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.

Slides:



Advertisements
Similar presentations
J.C Santiard CERN EP-MIC ANALOG AND DIGITAL PROCESSING FOR THE READOUT OF RADIATION DETECTORS  J.C. Santiard, CERN, Geneva, CH
Advertisements

Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
A High-speed Adaptively-biased Current- to-current Front-end for SSPM Arrays Bob Zheng, Jean-Pierre Walder, Henrik von der Lippe, William Moses, Martin.
TRAPPISTE Tracking Particles for Physics Instrumentation in SOI Technology Prof. Eduardo Cortina, Lawrence Soung Yee Institut de recherche en mathématique.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
1 Microstrip PSD detectors C. Fermon, V. Wintenberger, G. Francinet, F. Ott, Laboratoire Léon Brillouin CEA/CNRS Saclay.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Brookhaven Science Associates U.S. Department of Energy Multi-element Silicon Detectors for X-ray Spectroscopy and Diffraction D. P. Siddons, A. Kuczewski.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
Front-End ASICs for CZT and Si Multi-Element Detectors Gianluigi De Geronimo Microelectronics Group, Instrumentation Division, Brookhaven National Laboratory,
Managed by Brookhaven Science Associates for the U.S. Department of Energy Gianluigi De Geronimo Instrumentation Division, BNL April 2012 VMM1 Front-end.
1 Electronics for RICH Detectors Veljko Radeka, BNL RICH 2004 Workshop Developments in electronics: CMOS scaling The quest for single electron sensitivity:
Chevron / Zigzag Pad Designs for Gas Trackers
Detectors for Light Sources Contribution to the eXtreme Data Workshop of Nicola Tartoni Diamond Light Source.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Performance of a 128 Channel counting mode ASIC for direct X-ray imaging A 128 channel counting ASIC has been developed for direct X-ray imaging purposes.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
A 128-channel event-driven readout ASIC for the R 3 B Tracker TWEPP 2015, Lisbon Lawrence Jones ASIC Design Group Science and Technology Facilities Council.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
G. Bertuccio “Challenges in the Design of Front-End Electronics for Semiconductor Radiation Detectors ” 14 th International Workshop on Room Temperature.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
VMM ASIC ― Status Report - April 2013 Gianluigi De Geronimo
HEXITEC ASIC – A Pixellated Readout Chip for CZT Detectors Lawrence Jones ASIC Design Group Science and Technology Facilities Council Rutherford Appleton.
LHCb Vertex Detector and Beetle Chip
Fermilab Silicon Strip Readout Chip for BTEV
Pixel detector development: sensor
WG3 – STRIP R&D ITS - COMSATS P. Riedler, G. Contin, A. Rivetti – WG3 conveners.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
Albuquerque 1 Wolfgang Lohmann DESY On behalf of the FCAL collaboration Forward Region Instrumentation.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
A. Rivetti VIPS workshop-Pavia, April 23rd, 2010 The PANDA Microvertex Detector: Present Design and Opportunities for 3D Integration Technologies Angelo.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
CdTe prototype detector testing Anja Schubert The University of Melbourne 9 May 2011 Updates.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
12 th Pisa Meeting, Isola d’Elba, 25 May 2012 Politecnico di Milano, Italy New Development of Silicon Drift Detectors for Gamma-ray.
Readout Electronics for high-count-rate high-resolution
New Development of Silicon Drift Detectors for the SIDDHARTA-2 experiment upgrade Carlo Fiorini, Riccardo Quaglia Politecnico di Milano, Dipartimento di.
CEA DSM Irfu IDeF-X HD Imaging Detector Front-end for X-ray with High Dynamic range Alicja Michalowska, CEA-IRFU 1 Journées VLSI June 2010.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Progress with GaAs Pixel Detectors
“Test vehicle” in 130nm TSMC for CMS HGCAL
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
H. Toyokawa1, C. Saji1, M. Kawase1, S. Wu1, Y. Furukawa1, K
A General Purpose Charge Readout Chip for TPC Applications
VMM ASIC ― Status Report - April 2013 Gianluigi De Geronimo
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
Status of n-XYTER read-out chain at GSI
BESIII EMC electronics
Status of the CARIOCA project
Readout Electronics for Pixel Sensors
Why silicon detectors? Main characteristics of silicon detectors:
Readout Electronics for Pixel Sensors
Presentation transcript:

Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven National Laboratory, Upton, NY Rolf H. Beuttenmuller, Zheng Li Semiconductor Lab., Instrumentation Division, Brookhaven National Laboratory, Upton, NY Anthony J. Kuczewski, D. Peter Siddons National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY

Typical fluorescence EXAFS spectroscopy geometry EXAFS Sample Sensor Detector  Resolution : > 200 S/N < 300 eV FWHM  Rate : > 10 MHz/cm 2 > 100 kHz/pixel  Spectroscopy (energy windows) Electronics  front-end  processing  readout 2 – 20 keV

RESRATE Resolution vs Rate CpCp pixel CiCi IpIp charge preamplifier shaper Q

Resolution vs Rate

Optimum pixellation 20 mm  charge sharing (  20µm/side) and trapping (gap/side) : empirical

Optimum pixellation

quadrant (8  12=96 pixels) 96-channel front-end (3  32 channel ASICs) Peltier 20mm Si n-type high resistivity wafer 250µm thick, N = 384 p +  1mm  1mm pixels, C p  fF gaps 10µm, 30µm, 50µm

Beam through sample sensor

direct wire bonding bump bonding integrated metal lines strips Interconnecting pixel to front-end electronics ASIC sensor + interconnect parasitic + bond length - fringe capacitance - charge sharing and trapping ASIC sensor + interconnect parasitic - constraint on ASIC area and layout - fluorescence from Pb (Sn/Pb/Ag) - illumination from segmented side ASIC sensor + dielectric losses  interconnect parasitic - bond length + bond length - interconnect parasitic - dielectric losses ASIC sensor 6mm  10µm, Si 3 N 4 (  r =6.5,tan(  )  1m), 3µm,  C i  1.2pF  FWHM loss = 8.5/q·  (2kTC i tan(  ))  180eV INTERCONNECT

one quadrant Sensor – ASIC photo

ASIC channel overview  5 mW  3 mW ASIC continuous reset INPUT p-MOSFET optimized for operating region NIM A480, p.713 CONTINUOUS RESET feedback MOSFET self adaptive 1pA - 100pA low noise < 3.5e - 1µs highly linear < 0.2% FS US patent 5,793,254 NIM A421, p.322 TNS 47, p.1458 INPUT p-MOSFET optimized for operating region NIM A480, p.713 CONTINUOUS RESET feedback MOSFET self adaptive 1pA - 100pA low noise < 3.5e - 1µs highly linear < 0.2% FS US patent 5,793,254 NIM A421, p.322 TNS 47, p.1458 counters discriminators DACS DISCRIMINATORS five comparators 1 threshold + 2 windows four 6-bit DACs (1.6mV step) dispersion (adj) < 2.5e - rms COUNTERS three (one per discriminator) 24-bit each DISCRIMINATORS five comparators 1 threshold + 2 windows four 6-bit DACs (1.6mV step) dispersion (adj) < 2.5e - rms COUNTERS three (one per discriminator) 24-bit each baseline stabilizer HIGH ORDER SHAPER amplifier with passive feedback 5 th order complex semigaussian 2.6x better resolution vs 2 nd order TNS 47, p.1857 BASELINE STABILIZER (BLH) low-frequency feedback, BGR slew-rate limited follower DC and high-rate stabilization dispersion < 3mV rms stability <2mV rt  tp<0.1 TNS 47, p.818 HIGH ORDER SHAPER amplifier with passive feedback 5 th order complex semigaussian 2.6x better resolution vs 2 nd order TNS 47, p.1857 BASELINE STABILIZER (BLH) low-frequency feedback, BGR slew-rate limited follower DC and high-rate stabilization dispersion < 3mV rms stability <2mV rt  tp<0.1 TNS 47, p.818 high-order shaper

ASIC layout cells 3  24-bit COUNTERS - 690µm 100µm 4  6-bit DACs analog - 590µm DACS digital - 170µm 5  COMPARATORS - 130µm 100µm DAC cell COUNTER cell

charge preamplifiershaper with BLHdiscriminators and DACscounters 32 channels, 3.6  6.3 mm 2 ASIC photo

Measured resolution 50µm-gap, C p  700fF, C i-bond  fF, C i-pad  220fF

55 Fe spectrum 50µm-gap, C p  700fF, C i-bond  fF, C i-pad  220fF

self adaptive continuous reset high order shaper band-gap referenced output baseline output baseline stabilizer (BLH) test capacitors analog and pixel leakage monitors plug & play (fully self biasing) serial interface counters readout gain / peaking-time setting monitors & test enable channel masking DACs setting token or chip-select mode ASIC overview TechnologyCMOS 0.35µm 3.3V 2P4M Size  3.6  6.3 mm 2 # MOSFETs  180,000 # Channels32 power / channel  8 mW # Discriminatorsthree / channel (1 thr., 2 win.) threshold adjustmentfour 6-bit DACs (1.6mV step) threshold dispersion (adj)  2.5 electrons rms # Countersthree / channel bits per counter24 Gain (settable)750, 1500 mV/fC Peaking time (settable)0.5, 1, 2, 4 µs 1µs  /pF electrons rms 4µs  /pF electrons rms

Readout READOUT

Readout interface

Automatic threshold equalization before correction   170e - rms after correction   2.5e - rms

 400 channels, 10MHz New EXAFS detector

head - preamplifiers rack – shapers …  100 channels, > 350 eV, < 1 MHz Current EXAFS detector

Summary New detector for EXAFS monolithic Si sensor, 400-mm 2 active area  mm 2 pixels 32-channel ASICs New detector for EXAFS monolithic Si sensor, 400-mm 2 active area  mm 2 pixels 32-channel ASICs First results (single quadrant) ENC  /pF e - 4µs FWHM < rate < 100 kHz/pixel threshold dispersion < 2.5 e - rms First results (single quadrant) ENC  /pF e - 4µs FWHM < rate < 100 kHz/pixel threshold dispersion < 2.5 e - rms Future work one ASIC iteration pixel gap selection (10, 30, 50 µm) Peltier cooler assembly / test four quadrant (12 ASICs) assembly / test on-field test at NSLS (BNL) Future work one ASIC iteration pixel gap selection (10, 30, 50 µm) Peltier cooler assembly / test four quadrant (12 ASICs) assembly / test on-field test at NSLS (BNL)