Nonlinear Programming Peter Zörnig ISBN: 978-3-11-031527-1 © 2014 by Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of Figures Tabellenübersicht.

Slides:



Advertisements
Similar presentations
Line Search.
Advertisements

Optimization.
Engineering Optimization
1 OR II GSLM Outline  some terminology  differences between LP and NLP  basic questions in NLP  gradient and Hessian  quadratic form  contour,
Introducción a la Optimización de procesos químicos. Curso 2005/2006 BASIC CONCEPTS IN OPTIMIZATION: PART II: Continuous & Unconstrained Important concepts.
Optimization methods Review
1 TTK4135 Optimization and control B.Foss Spring semester 2005 TTK4135 Optimization and control Spring semester 2005 Scope - this you shall learn Optimization.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Nonlinear Programming
Review + Announcements 2/22/08. Presentation schedule Friday 4/25 (5 max)Tuesday 4/29 (5 max) 1. Miguel Jaller 8:031. Jayanth 8:03 2. Adrienne Peltz 8:202.
Thursday, April 25 Nonlinear Programming Theory Separable programming Handouts: Lecture Notes.
Network Systems Lab. Korea Advanced Institute of Science and Technology No.1 Some useful Contraction Mappings  Results for a particular choice of norms.
Easy Optimization Problems, Relaxation, Local Processing for a small subset of variables.
MIT and James Orlin © Nonlinear Programming Theory.
Numerical Optimization
1cs542g-term Notes  Extra class this Friday 1-2pm  If you want to receive s about the course (and are auditing) send me .
Nonlinear Optimization for Optimal Control
Engineering Optimization
1 Chapter 8: Linearization Methods for Constrained Problems Book Review Presented by Kartik Pandit July 23, 2010 ENGINEERING OPTIMIZATION Methods and Applications.
Revision.
Exploiting Duality (Particularly the dual of SVM) M. Pawan Kumar VISUAL GEOMETRY GROUP.
Simplex Method LP problem in standard form. Canonical (slack) form : basic variables : nonbasic variables.
Optimization Methods One-Dimensional Unconstrained Optimization
Engineering Optimization
Advanced Topics in Optimization
Optimality Conditions for Nonlinear Optimization Ashish Goel Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.
Elements of Partial Differential Equations Pavel Drábek / Gabriela Holubová ISBN: © 2014 Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht.
Optimization Methods One-Dimensional Unconstrained Optimization
Lecture 9 – Nonlinear Programming Models
Optimization of Linear Problems: Linear Programming (LP) © 2011 Daniel Kirschen and University of Washington 1.
1 OR II GSLM Outline  separable programming  quadratic programming.
Chapter 3 Root Finding.
Computational Optimization
MATH 685/ CSI 700/ OR 682 Lecture Notes Lecture 9. Optimization problems.
Chapter 10 Nonlinear Programming Methods.
Brownian Motion René L. Schilling / Lothar Partzsch ISBN: © 2014 Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of.
1 Chapter 8 Nonlinear Programming with Constraints.
The method of moments in dynamic optimization
ENCI 303 Lecture PS-19 Optimization 2
84 b Unidimensional Search Methods Most algorithms for unconstrained and constrained optimisation use an efficient unidimensional optimisation technique.
General Nonlinear Programming (NLP) Software
Nonlinear programming Unconstrained optimization techniques.
Nonlinear Programming.  A nonlinear program (NLP) is similar to a linear program in that it is composed of an objective function, general constraints,
1 Subdivision Termination Criteria in Subdivision Multivariate Solvers Iddo Hanniel, Gershon Elber CGGC, CS, Technion.
MA/CS 375 Fall MA/CS 375 Fall 2002 Lecture 31.
MA3264 Mathematical Modelling Lecture 9 Chapter 7 Discrete Optimization Modelling Continued.
L21 Numerical Methods part 1 Homework Review Search problem Line Search methods Summary 1 Test 4 Wed.
1  Problem: Consider a two class task with ω 1, ω 2   LINEAR CLASSIFIERS.
Chapter 10 Minimization or Maximization of Functions.
1 Chapter 6 General Strategy for Gradient methods (1) Calculate a search direction (2) Select a step length in that direction to reduce f(x) Steepest Descent.
Optimization of functions of one variable (Section 2)
Part 3. Linear Programming 3.2 Algorithm. General Formulation Convex function Convex region.
Nonlinear Programming In this handout Gradient Search for Multivariable Unconstrained Optimization KKT Conditions for Optimality of Constrained Optimization.
INTRO TO OPTIMIZATION MATH-415 Numerical Analysis 1.
Linear & Nonlinear Programming -- Basic Properties of Solutions and Algorithms.
Parametric Quadratic Optimization Oleksandr Romanko Joint work with Alireza Ghaffari Hadigheh and Tamás Terlaky McMaster University January 19, 2004.
Water resources planning and management by use of generalized Benders decomposition method to solve large-scale MINLP problems By Prof. André A. Keller.
Bounded Nonlinear Optimization to Fit a Model of Acoustic Foams
Water Resources Development and Management Optimization (Nonlinear Programming & Time Series Simulation) CVEN 5393 Apr 11, 2011.
Computation of the solutions of nonlinear polynomial systems
Computational Optimization
CS B553: Algorithms for Optimization and Learning
CS5321 Numerical Optimization
Part 3. Linear Programming
~ Least Squares example
~ Least Squares example
Part 3. Linear Programming
L23 Numerical Methods part 3
CS5321 Numerical Optimization
Bracketing.
Presentation transcript:

Nonlinear Programming Peter Zörnig ISBN: © 2014 by Walter de Gruyter GmbH, Berlin/Boston Abbildungsübersicht / List of Figures Tabellenübersicht / List of Tables

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston Fig Graphical illustration of the transportation problem. 2

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 3 Table 1.1. Data of the meteorological observatory.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 4 Fig Dispersion diagram.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 5 Fig Measurements of a box.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 6 Fig Measures of the modified box.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 7 Fig Locations of gas stations and demands.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 8 Table 1.2. Heights of terrain and road.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 9 Fig Terrain and optimal road height.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 10 Fig Nonconvex feasible region.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 11 Fig Nonconnected feasible region.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 12 Fig Optimal point in the interior of M.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 13 Fig Local and global minimum points.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 14 Fig Feasible and nonfeasible directions.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 15 Fig Cone Z(x ∗ ) of Example 2.2 (a).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 16 Fig Cone Z(x ∗ ) of Example 2.2 (b).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 17 Fig Cone of feasible directions for linear constraints.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 18 Fig Cone of feasible directions with L 0 (x ∗ ) ≠ Z(x ∗ ) ≠ L(x ∗ ).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 19 Fig Geometric illustration of Example 2.11.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 20 Fig Line segment [x 1, x 2 ].

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 21 Fig Convex and nonconvex sets.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 22 Fig Convex polyhedral sets.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 23 Fig Extreme points of convex sets.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 24 Fig Convex hull of a finite set.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 25 Fig Convex hulls of nonfinite sets.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 26 Fig Simplex of dimension 2 and 3.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 27 Fig Illustration of Theorem 3.12.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 28 Fig Convex and concave functions.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 29 Fig Illustration of Theorem 3.25.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 30 Fig The epigraph of a function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 31 Fig Supporting hyperplanes of convex sets.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 32 Fig Support function of f at x ∗.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 33 Fig Support functions of the function f of Example 3.35.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 34 Fig The function f (x1, x2) = |x1| + |x2|.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 35 Fig Illustration of Theorem 3.48.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 36 Fig Minimum point of a concave function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 37 Fig Nonregular point x ∗ = 0.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 38 Fig Illustration of the Farkas lemma.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 39 Fig Geometrical illustration of KKT conditions.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 40 Fig Illustration of the relation (4.22).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 41 Fig Illustration of Example 4.8.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 42 Fig Illustration of Example 4.14.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 43 Fig Saddle point.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 44 Fig Geometric illustration of (P).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 45 Fig Geometric illustration of (D).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 46 Fig Function h 1 (x 1 ) for various values of u.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 47 Fig Dual objective function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 48 Fig Geometrical solution of Example 4.47 (case a).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 49 Fig Geometrical solution of Example 4.47 (case b).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 50 Fig Illustration of Example 4.50.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 51 Fig Unimodal function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 52 Fig Locating of x.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 53 Fig Construction of the new interval [a k+1, b k+1 ].

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 54 Table 6.1. Golden Section.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 55 Fig Iteration of Newton’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 56 Fig Construction of a useless value.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 57 Fig Cycling of Newton’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 58 Fig Interpolation polynomials of Example 6.17.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 59 Fig Interpolation polynomials of Example 6.20.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 60 Fig Orthogonal coordinate transformations.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 61 Fig Level curves of the function 2x x 1 x 2 + 5x 2 2.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 62 Fig Level surface z = 6 for the function 7x 2 1 − 2x 1 x 2 + 4x 1 x 3 + 7x 2 2 − 4x 2 x x 2 3.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 63 Table 7.1. Gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 64 Fig Minimization process of the gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 65 Table 7.2. Conjugate gradient method (quadratic problem).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 66 Table 7.3. Conjugate gradient method (nonquadratic problem).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 67 Fig Solution of Example 7.30 by the conjugate gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 68 Table 7.4. DFP method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 69 Table 7.5. Cyclic minimization.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 70 Fig Solution of Example 7.38.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 71 Table 7.6. Inexact line search (case a).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 72 Fig Convergence to a nonoptimal point.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 73 Table 7.7. Inexact line search (case b).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 74 Fig Oscillation of the algorithm.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 75 Fig Reversal strategy.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 76 Fig Solution of the quadratic subproblem.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 77 Fig Trust region method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 78 Fig Construction of the search direction.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 79 Fig Resolution of Example 8.2 by Rosen’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 80 Fig Optimal directions.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 81 Fig Zigzag movement.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 82 Table 8.1. Pivoting of Example 8.17.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 83 Fig Active set method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 84 Table 9.1. Initial tableau of Lemke’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 85 Table 9.2. Pivot steps of Example 9.4.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 86 Table 9.3. Pivot steps of Example 9.5.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 87 Fig Unbounded optimal solution.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 88 Fig Locations of gas stations.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 89 Fig Penalty terms.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 90 Fig Function q(x, r) of Example 10.2.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 91 Fig Function q(x, r) of Example 10.2.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 92 Fig Penalty method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 93 Fig Exact penalty function (10.12).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 94 Fig Illustration of robustness.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 95 Fig Barrier terms.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 96 Fig Barrier function s(x, c) of Example

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 97 Table Solution of Example

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 98 Table Solution of Example

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 99 Fig Barrier method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 100 Fig Partial cost function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 101 Fig Nondifferentiable function of a minimax problem.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 102 Fig Nondifferentiable bidimensional objective function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 103 Fig Graphical solution of problem (11.9).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 104 Fig Objective function of problem (11.8).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 105 Fig Minimization of function (11.10) with the gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 106 Fig Minimization of function (11.11) with the gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 107 Fig Piecewise linear function f and differential approximation g for ε = 0.1.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 108 Table Minimization by differentiable approximation.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 109 Fig Local and global minima of problem (11.28).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 110 Fig D.c. function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 111 Fig Branch-and-bound method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 112 Fig Branch-and-bound method (continuation).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 113 Fig Subdivisions of the feasible region.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 114 Fig Optimization problem (11.36).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 115 Table Population P(0).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 116 Table Population P(1).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 117 Fig Feasible set and gradients.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 118 Fig Feasible region and gradients.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 119 Fig Feasible directions at x ∗ in diverse cases.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 120 Fig Algebraic sum.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 121 Fig Feasible direction.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 122 Fig Discontinuous concave function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 123 Fig Convex function.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 124 Fig Geometrical illustration of the subdifferential.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 125 Fig Dispersion diagram.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 126 Fig Feasible region.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 127 Fig Regular point x ∗ = 0 with linearly dependent gradients.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 128 Fig Geometric resolution of Exercise 4.9.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 129 Fig Geometric solution of Exercise 4.15.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 130 Fig Geometric solution of Exercise 4.33.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 131 Fig Geometric solution of Exercise 4.34.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 132 Table 5.1. Error sequence.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 133 Table 5.2. Linear and quadratic convergence.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 134 Table 6.2. Golden Section.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 135 Table 6.3. Bisection algorithm.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 136 Fig Premature convergence of the bisection method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 137 Fig Hermite interpolation polynomial.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 138 Fig Level curves of Exercise 7.7.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 139 Fig Displaced ellipses.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 140 Fig Level curves of quadratic functions.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 141 Table 7.8. Gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 142 Table 7.9. Newton’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 143 Fig Minimization process of Newton’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 144 Table Conjugate gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 145 Table DFP method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 146 Table Conjugate gradient method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 147 Table DFP method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 148 Table Variant of the DFP method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 149 Table Cyclic minimization.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 150 Fig Level curves of the first quadratic model of Example 7.50.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 151 Fig Level curves of the function of Exercise 7.54 (b).

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 152 Fig Geometric solution of Exercise 8.7.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 153 Fig Feasible region.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 154 Fig Zoutendijk’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 155 Fig Graphical illustration of both methods.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 156 Table 8.2. Pivoting of Example 8.18.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 157 Table 9.4. Lemke’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 158 Table 9.5. Lemke’s method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 159 Table Barrier method.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 160 Fig Solution process.

Nonlinear Programming, Peter Zörnig ISBN © 2014 by Walter de Gruyter GmbH, Berlin/Boston 161 Table Barrier method.