4.6.2 Exponential generating functions

Slides:



Advertisements
Similar presentations
Week 6 - Wednesday CS322.
Advertisements

Advanced Counting Techniques
Chapter Recurrence Relations
Chapter Recurrence Relations
1 Copyright M.R.K. Krishna Rao Solving Recurrence Relations Steps for solving a linear homogeneous recurrence relation of degree 2 : Step #1.
SECTION 3.6 COMPLEX ZEROS; COMPLEX ZEROS; FUNDAMENTAL THEOREM OF ALGEBRA FUNDAMENTAL THEOREM OF ALGEBRA.
Transparency No. 5-1 Discrete Mathematics Chapter 5 Advanced Counting Techniques.
1 Section 6.1 Recurrence Relations. 2 Recursive definition of a sequence Specify one or more initial terms Specify rule for obtaining subsequent terms.
6.Advanced Counting Techniques 1 Copyright M.R.K. Krishna Rao 2003 Ch 6. Recurrence Relations A recurrence relation for the sequence {a n } is an equation.
Chapter 8 With Question/Answer Animations 1. Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence.
Applied Discrete Mathematics Week 9: Relations
7.2 Solving Recurrence Relations. Definition 1 (p. 460)- LHRR-K Def: A linear homogeneous recurrence relations of degree k with constant coefficients.
Advanced Counting Techniques
7.4 Generating Functions Definition 1: The generation function for the sequence a 0, a 1,...,a k,... of real numbers is the infinite series G(x) = a 0.
Jessie Zhao Course page: 1.
Chapter 8. Section 8. 1 Section Summary Introduction Modeling with Recurrence Relations Fibonacci Numbers The Tower of Hanoi Counting Problems Algorithms.
Chap. 7 (c) , Michael P. Frank1 Chapter 7: Advanced Counting Techniques.
Ch. 7: Advanced Counting Techniques
Chapter 8 With Question/Answer Animations 1. Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence.
14.1 CompSci 102© Michael Frank Today’s topics Recurrence relationsRecurrence relations –Stating recurrences –LiHoReCoCo –Divide & conquer –Master’s method.
Recurrence Relation. Outline  What is a recurrence relation ?  Solving linear recurrence relations  Divide-and-conquer algorithms and recurrence relations.
CSE 2813 Discrete Structures Recurrence Relations Section 6.1.
R. Johnsonbaugh Discrete Mathematics 7 th edition, 2009 Chapter 7 Recurrence Relations Instructor Tianping Shuai.
15.1 CompSci 102© Michael Frank Today’s topics Recurrence relationsRecurrence relations –Stating recurrences –LiHoReCoCo Reading: Sections Reading:
Module #17: Recurrence Relations Rosen 5 th ed., §
Solving Second-Order Recursive Relations Lecture 36 ½ Section 8.3 Wed, Apr 19, 2006.
1 Chapter 7 Generating functions. 2 Summary Generating functions Recurrences and generating functions A geometry example Exponential generating functions.
RECURRENCE Sequence Recursively defined sequence
Based on Rosen, Discrete Mathematics & Its Applications, 5e Prepared by (c) Michael P. Frank Modified by (c) Haluk Bingöl 1/18 Module.
4.5.2 Applications of Inclusion-Exclusion principle
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
Chapter 7 Advance Counting Techniques. Content Recurrence relations Generating function The principle of inclusion-exclusion.
Module #1 - Logic 1 Based on Rosen, Discrete Mathematics & Its Applications. Prepared by (c) , Michael P. Frank and Modified By Mingwu Chen Recurrence.
Section 4.4 Undetermined Coefficients— Superposition Approach.
Chapter 8 With Question/Answer Animations. Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence.
after UCI ICS/Math 6A, Summer AdvancedCounting -1 Recurrence Relations (RRs) A “Recurrence Relation”
CHAPTER TWO RECURRENCE RELATION
7.2 Solving Linear Recurrence Relations Some of these recurrence relations can be solved using iteration or some other ad hoc technique. However, one important.
CSE 2813 Discrete Structures Solving Recurrence Relations Section 6.2.
Agenda Lecture Content:  Recurrence Relations  Solving Recurrence Relations  Iteration  Linear homogenous recurrence relation of order k with constant.
Discrete Mathematics Chapter 6 Advanced Counting Techniques.
Recurrence Relations. Outline Recurrence relationsSolving recurrence relationsRecurrence and Divide-and-conquer algorithmsGenerating functions
4.6 Generating functions Generating functions
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
RECURRENCE Sequence Recursively defined sequence
1 RECURRENCE 1. Sequence 2. Recursively defined sequence 3. Finding an explicit formula for recurrence relation.
Mathematical Analysis of Recursive Algorithm CSG3F3 Lecture 7.
Advanced Counting Techniques
Discrete Math For Computing II. Contact Information B. Prabhakaran Department of Computer Science University of Texas at Dallas Mail Station EC 31, PO.
CSG523/ Desain dan Analisis Algoritma
CSG523/ Desain dan Analisis Algoritma
CMSC Discrete Structures
Advanced Counting Techniques
Modeling with Recurrence Relations
Introduction to Recurrence Relations
UNIT-6 Recurrence Relations
Recurrence Relations.
Module #17: Recurrence Relations
Section 3.4 Zeros of Polynomial Functions
4.6.2 Exponential generating functions
Module #17: Recurrence Relations
CMSC Discrete Structures
4.7 Recurrence Relations P13, P100
2.Derangements A derangement of {1,2,…,n} is a permutation i1i2…in of {1,2,…,n} in which no integer is in its natural position: i11,i22,…,inn. We denote.
CMSC Discrete Structures
Recurrence Relations Discrete Structures.
Chapter 7 Advanced Counting Techniques
Recurrence Relations (RRs)
Recurrence Relations Rosen 5th ed., §6.2 5/22/2019
ICS 253: Discrete Structures I
Presentation transcript:

4.6.2 Exponential generating functions The number of r-combinations of multiset S={n1·a1,n2·a2,…, nk·ak} : C(r+k-1,r), generating function: The number of r-permutation of set S={a1,a2,…, ak} :p(n,r), generating function:

C(n,r)=p(n,r)/r! Definition 2: The exponential generating function for the sequence a0,a1,…,an,…of real numbers is the infinite series

Theorem 4.17: Let S be the multiset {n1·a1,n2·a2,…,nk·ak} where n1,n2,…,nk are non-negative integers. Let br be the number of r-permutations of S. Then the exponential generating function g(x) for the sequence b1, b2,…, bk,… is given by g(x)=gn1(x)·g n2(x)·…·gnk(x),where for i=1,2,…,k, gni(x)=1+x+x2/2!+…+xni/ni! . (1)The coefficient of xr/r! in gn1(x)·g n2(x)·…·gnk(x) is

Example: Let S={1·a1,1·a2,…,1·ak} Example: Let S={1·a1,1·a2,…,1·ak}. Determine the number r-permutations of S. Solution: Let pr be the number r-permutations of S, and

Example: Let S={·a1,·a2,…,·ak},Determine the number r-permutations of S. Solution: Let pr be the number r-permutations of S, gri(x)=(1+x+x2/2!+…+xr/r!+…),then g(x)=(1+x+x2/2!+…+xr/r!+…)k=(ex)k=ekx

Example:Let S={2·x1,3·x2},Determine the number 4-permutations of S. Let pr be the number r-permutations of S, g(x)=(1+x+x2/2!)(1+x+x2/2!+x3/3!) Note: pr is coefficient of xr/r!. Example:Let S={2·x1,3·x2,4·x3}. Determine the number of 4-permutations of S so that each of the 3 types of objects occurs even times. Solution: Let pr be the number r-permutations of S, g(x)=(1+x2/2!)(1+x2/2!)(1+x2/2!+x4/4!)

Example: Let S={·a1,·a2, ·a3},Determine the number of r-permutations of S so that a3 occurs even times and a2 occurs at least one time. Let pr be the number r-permutations of S, g(x)=(1+x+x2/2!+…+xr/r!+…)(x+x2/2!+…+xr/r! +…) (1+x2/2!+x4/4!+…)=ex(ex-1)(ex+e-x)/2 =(e3x-e2x+ex-1)/2

Example: Let S={·a1,·a2, ·a3},Determine the number of r-permutations of S so that a3 occurs odd times and a2 occurs at least one time. Let pr be the number r-permutations of S, g(x)=(1+x+x2/2!+…+xr/r!+…)(x+x2/2!+…+xr/r! +…) (x+x3/3!+x5/5!+…) =ex(ex-1)(ex-e-x)/2

4.7 Recurrence Relations P13, P100 Definition: A recurrence relation for the sequence{an} is an equation that expresses an in terms of one or more of the previous terms of the sequence, namely, a0, a1, …, an-1, for all integers n with nn0, where n0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. Initial condition: the information about the beginning of the sequence.

Example(Fibonacci sequence): A young pair rabbits (one of each sex) is placed in enclosure. A pair rabbits dose not breed until they are 2 months old, each pair of rabbits produces another pair each month. Find a recurrence relation for the number of pairs of rabbits in the enclosure after n months, assuming that no rabbits ever die. Solution: Let Fn be the number of pairs of rabbits after n months, (1)Born during month n (2)Present in month n-1 Fn=Fn-2+Fn-1,F1=F2=1

Example (The Tower of Hanoi): There are three pegs and n circular disks of increasing size on one peg, with the largest disk on the bottom. These disks are to be transferred, one at a time, onto another of the pegs, with the provision that at no time is one allowed to place a larger disk on top of a smaller one. The problem is to determine the number of moves necessary for the transfer. Solution: Let h(n) denote the number of moves needed to solve the Tower of Hanoi problem with n disks. h(1)=1 (1)We must first transfer the top n-1 disks to a peg (2)Then we transfer the largest disk to the vacant peg (3)Lastly, we transfer the n-1 disks to the peg which contains the largest disk. h(n)=2h(n-1)+1, h(1)=1

Using Characteristic roots to solve recurrence relations Using Generating functions to solve recurrence relations

4.7.1 Using Characteristic roots to solve recurrence relations Definition: A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form an=h1an-1+h2an-2+…+hkan-k, where hi are constants for all i=1,2,…,k,n≥k, and hk≠0. Definition: A linear nonhomogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form an=h1an-1+h2an-2+…+hkan-k+f(n), where hi are constants for all i=1,2,…,k,n≥k, and hk≠0.

Definition: The equation xk-h1xk-1-h2xk-2-…-hk=0 is called the characteristic equation of the recurrence relation an=h1an-1+h2an-2+…+hkan-k. The solutions q1,q2,…,qk of this equation are called the characteristic root of the recurrence relation, where qi(i=1,2,…,k) is complex number. Theorem 4.18: Suppose that the characteristic equation has k distinct roots q1,q2,…,qk. Then the general solution of the recurrence relation is an=c1q1n+c2q2n+…+ckqkn, where c1,c2,…ck are constants.

Example: Solve the recurrence relation an=2an-1+2an-2,(n≥2) subject to the initial values a1=3 and a2=8. characteristic equation : x2-2x-2=0, roots: q1=1+31/2,q2=1-31/2。 the general solution of the recurrence relation is an=c1(1+31/2)n+c2(1-31/2)n, We want to determine c1 and c2 so that the initial values c1(1+31/2)+c2(1-31/2)=3, c1(1+31/2)2+c2(1-31/2)2=8

Theorem 4.19: Suppose that the characteristic equation has t distinct roots q1,q2,…,qt with multiplicities m1,m2,…,mt, respectively, so that mi≥1 for i=1,2,…,t and m1+m2+…+mt=k. Then the general solution of the recurrence relation is where cij are constants for 1≤j≤mi and 1≤i≤t.

Example: Solve the recurrence relation an+an-1-3an-2-5an-3-2an-4=0,n≥4 subject to the initial values a0=1,a1=a2=0, and a3=2. characteristic equation x4+x3-3x2-5x-2=0, roots:-1,-1,-1,2 By Theorem 4.19:the general solution of the recurrence relation is an=c11(-1)n+c12n(-1)n+c13n2(-1)n+c212n We want to determine cij so that the initial values c11+c21=1 -c11-c12-c13+2c21=0 c11+2c12+4c13+4c21=0 -c11-3c12-9c13+8c21=2 c11=7/9,c12=-13/16,c13=1/16,c21=1/8 an=7/9(-1)n-(13/16)n(-1)n+(1/16)n2(-1)n+(1/8)2n

the general solution of the linear nonhomogeneous recurrence relation of degree k with constant coefficients is an=a'n+a n* a'n is the general solution of the linear homogeneous recurrence relation of degree k with constant coefficients an=h1an-1+h2an-2+…+hkan-k a n*is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients an=h1an-1+h2an-2+…+hkan-k+f(n)

Theorem 4.20: If {a n*} is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients an=h1an-1+h2an-2+…+hkan-k+f(n), then every solution is of the form {a'n+a n*}, where {a n*} is a general solution of the associated homogeneous recurrence relation an=h1an-1+h2an-2+…+hkan-k. Key:a n*

(1)When f(n) is a polynomial in n of degree t, a n*=P1nt+P2nt-1+…+Ptn+Pt+1 where P1,P2,…,Pt,Pt+1 are constant coefficients (2)When f(n) is a power function with constant coefficient n, if  is not a characteristic root of the associated homogeneous recurrence relation, a n*= Pn , where P is a constant coefficient. if  is a characteristic root of the associated homogeneous recurrence relation with multiplicities m, a n*= Pnmn ,where P is a constant coefficient. Example: Find all solutions of the recurrence relation an+2an-1=n+1,n1, a0=2

Example: Find all solutions of the recurrence relation h(n)=2h(n-1)+1, n2, h(1)=1 an=an-1+7n,n1, a0=1 If let an*=P1n+P2, P1n+P2-P1(n-1)-P2=7n P1=7n Contradiction let an*=P1n2+P2n

4.7.2 Using Generating functions to solve recurrence relations Example: Solve the recurrence relation an=an-1+9an-2-9an-3,n≥3 subject to the initial values a0=0, a1=1, a2=2

Example: Solve the recurrence relation : an=an-1+9an-2-9an-3,n≥3 subject to the initial values a0=0, a1=1, a2=2 Solution: Let Generating functions of {an} be: f(x)=a0+a1x+a2x2+…+anxn+… , then: -xf(x) =-a0x-a1x2-a2x3…-anxn+1-… -9x2f(x) = -9a0x2-9a1x3-9a2x4-…-9an-2xn-… 9x3f(x) = 9a0x3+9a1x4+…+9an-3xn+… (1-x-9x2+9x3)f(x)=a0+(a1-a0)x+(a2-a1-9a0)x2+ (a3-a2-9a1+9a0)x3+…+(an-an-1-9an-2+9an-3)xn+… a0=0,a1=1, a2=2,and when n≥3,an-an-1-9an-2+9an-3=0, (an=an-1+9an-2-9an-3) thus: (1-x-9x2+9x3)f(x)=x+x2 f(x)=(x+x2)/(1-x-9x2+9x3) =(x+x2)/((1-x)(1+3x)(1-3x)) 1/(1-x)=1+x+x2+…+xn+…; 1/(1+3x)=1-3x+32x2-…+(-1)n3nxn+… 1/(1-3x)=1+3x+32x2+…+3nxn+…;

Example: Find an explicit formula for the Fibonacci numbers, Fn=Fn-2+Fn-1, F1=F2=1。 Solution: Let Generating functions of {Fn} be: f(x)=F0+F1x+F2x2+…+Fnxn+…,then: -xf(x) =-F0x-F1x2-F2x3…-Fnxn+1-… -x2f(x) =-F0x2-F1x3-F2x4-…-Fn-2xn-… (1-x-x2)f(x)=F1x+(F2-F1)x2+(F3-F2-F1)x3+(F4-F3-F2)x4+…+(Fn-Fn-1-Fn-2)xn+… F1=1, F2=1,and when n≥3,Fn-Fn-1-Fn-2=0, (Fn=Fn-1+Fn-2) thus: (1-x-x2)f(x)=x f(x)=x/(1-x-x2) Fn-10.618Fn。 golden section黄金分割。

Exercise P104 18,20,23.Note: By Characteristic roots, solve recurrence relations 23; By Generating functions, solve recurrence relations 18,20. 1.Determine the number of n digit numbers with all digits at least 4, such that 4 and 6 each occur an even number of times, and 5 and 7 each occur at least once, there being no restriction on the digits 8 and 9. 2.a)Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time. b) What are the initial conditions? 3.a) Find a recurrence relation for the number of ternary strings that do not contain two consecutive 0s. b) What are the initial conditions?