Alexander Herlert High-precision mass measurements on exotic nuclides: recent results from the ISOLTRAP experiment CERN, PH-IS EP Seminar, CERN, May 15,

Slides:



Advertisements
Similar presentations
Atomic masses – Competition worldwide K. Blaum, Phys. Rep. 425, 1-78 (2006) Penning-trap mass spectrometry groups for stable masses: D. Pritchard, MIT.
Advertisements

Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Penning-Trap Mass Spectrometry for Neutrino Physics
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany.
The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration.
Teresa Kurtukian-Nieto Centre d’Etudes Nucléaires de Bordeaux Gradignan Precision half-life determination of the superallowed 0 + → 0 + β + -emmiters 42.
 asymmetry parameter measurements in nuclear  -decay as a probe for non-Standard Model physics K.U.Leuven, Univ. Bonn, NPI Rez (Prague), ISOLDE CERN.
A Penning trap as a precision mass balance – Q-Value determinations with ISOLTRAP and SMILETRAP Outline Workshop on NDBD, Durham, Klaus Blaum:
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
Overview of Recent Highlights from ISOL Facilities Juha Äystö Department of Physics, University of Jyväskylä & Helsinki Institute of Physics Finland Introduction.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
TITAN Mass Measurement of 11 Li (and other halo nuclei) Ryan Ringle, TRIUMF.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
MR-TOF at ISOLDE Frank Wienholtz - University of Greifswald - for the ISOLTRAP Collaboration GUI –
Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 23-May-2002Weak Interaction Trap for CHarged particles1 Progress of the WITCH project Valentin Kozlov NIPNET meeting,
Temperature Regulation for High-Precision Mass Measurements at ISOLTRAP Elizabeth Wingfield, Florida State, Tallahassee Advisor: Alexander Herlert.
K. Riisager, TA8 ISOLDEEURONS PCC-Meeting, Mainz (Germany), April 2006 Recent highlights from ISOLDE News from the facility –Users meeting, February.
Clean Beams at ISOL Facilities GSI Workshop on Astrophysics and Nuclear Structure, January 15-21, 2006 in Hirschegg, Austria O.Arndt, H. Frånberg, C.Jost,
Contribution of Penning trap mass spectrometry to neutrino physics Szilárd Nagy MPI-K Heidelberg, Germany New Instruments for Neutrino Relics and Mass,
1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Masses of tripline nuclei Frank Herfurth, ISOLDE/CERN.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
1 stephan ettenauer for the TITAN collaboration The Mass of 74 Rb: First Mass Measurements of Highly Charged, Short- lived Nuclides in a Penning Trap ISAC.
JRA10 Instrumentation for Precise Nuclear Measurements with Trapped Ion Techniques
Binding energies of neutron-rich isotopes as measured with the CPT at CARIBU Jason Clark CIPANP 2015 May 19-24, 2015.
TRIGA-TRAP High-precision mass measurements on neutron-rich nuclides and actinides November, 18 th Jens Ketelaer 1 Outline: Motivation Mass measurements.
Addendum to Proposal P-242 to the INTC SEARCH FOR NEW CANDIDATES FOR THE NEUTRINO-ORIENTED PRECISION MASS SPECTROMETRY D. Beck, K. Blaum, M. Block, Ch.
A mass-purification method for REX beams
ISOLDE Workshop and Users Meeting, 12 – 14 February 2007H.-Jürgen Kluge 1 H.-Jürgen Kluge GSI Darmstadt and University of Heidelberg Atomic Physics Goes.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Low-energy experiments at ISOLDE – atomic, nuclear, and fundamental physics Magdalena Kowalska ISOLDE Physics Coordinator.
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
Precision Measurements of Very-Short Lived Nuclei Using an Advances Trapping System for Highly-Charged Ions q / A - selectionCooling processMass measurement.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
WITCH - a first determination of the beta-neutrino angular correlation coefficient in 35 Ar decay S. Van Gorp, M. Breitenfeldt, V. De Leebeeck,T. Porobic,
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Precision mass measurements of n-rich nuclei between N=50 and 82. Short overview on the experimental approach Penning trap mass measurements on n-rich.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Bertram Blank CEN Bordeaux-Gradignan main physics goals detector scans source measurements MC simulations ISOLDE workshop, December 5-7, 2011.
G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005 Overview and Motivation Mass Measurements at ISOLDE … … and elsewhere Conclusions Mass Measurements.
LIST status and outlook Sven Richter for the LIST-, RILIS- and Target-Collaborations 21 st of August 2013.
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
Nuclear structure research at ISOLTRAP 17th of November 2008 Dennis Neidherr University of Mainz Outline:  Motivation for our measurements  Xe/Rn results.
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 18-September-2002Weak Interaction Trap for CHarged particles1 Present status of WITCH experiment Valentin Kozlov.
Nuclear Mass Measurement and Evaluation WANG Meng Institute of Modern Physics, CAS 1st International Workshop on Nuclear Structure, Hadron Physics and.
R. Ringle, 16/03/21, Slide 1 LEBIT: Present status Ryan Ringle National Superconducting Cyclotron Lab Michigan State University.
Measurement of the super-allowed branching ratio of 22 Mg B. Blank, M. Aouadi, P. Ascher, M. Gerbaux, J. Giovinazzo, T. Goigoux, S. Grévy, T. Kurtukian.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Michael Dworschak, GSI for the SHIPTRAP collaboration
FIDIPRO-JSPS Workshop, Keurusselkä , AriJokinen, JYFL Nuclear structure probed by precision atomic mass measurements in a Penning trap Ari.
Max-Planck-Institut für Kernphysik, Heidelberg Zhuang GE RIKEN, Wako, Japan Mass measurements of short-lived nuclides at storage rings in Asia and its.
1 Atomic Mass Evaluation Meng WANG (王猛) CSNSM-CNRS, France MPIK-Heidelberg, Germany IMP-CAS, China 5 th FCPPL workshop.
Isochronous mass measurements of 58 Ni projectile fragments at CSRe Xinliang Yan Precision nuclear spectroscope group Institute of Modern Physics, Chinese.
One way to improve first class mass ISOLTRAP
Alexander Herlert, CERN (PH-SME-IS)
29 June 2016 Addendum to the ISOLDE and Neutron Time-of-Flight Committee IS490 experiment Seeking the onset of collectivity in neutron-rich krypton isotopes.
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Masses of noble gases David Lunney CERN contact: Sarah Naimi, CSNSM
Status of the A=56, 64, and 68 X-ray burst waiting points
High-precision mass measurements of exotic nuclides:
Penning Trap Mass Spectrometry for Particle Physics
Presentation transcript:

Alexander Herlert High-precision mass measurements on exotic nuclides: recent results from the ISOLTRAP experiment CERN, PH-IS EP Seminar, CERN, May 15, 2006

High-precision mass measurements on exotic nuclides: recent results from the ISOLTRAP experiment EP Seminar, CERN, May 15, 2006 Atomic masses of radionuclides The ISOLTRAP experiment Principle of mass measurement Recent experimental results New techniques and methods

Radionuclides - What accuracy is needed? Nuclear Physics nuclear binding energies, Q-values shell closures, pairing, deformation, halos, isomers test of nuclear models and formulae  m/m  1·10 -7 Astrophysics nuclear synthesis r- and rp-process  m/m  1·10 -7 Weak Interaction symmetry tests CVC hypothesis  m/m  1·10 -8 ( p, )  ( p, )  ( p, )   +  +  + Hot cycle Cold cycle Common 11 Li

Neutron Number N Proton Number Z In total: 3180 nuclides Measured masses: 2228 Atomic Mass Evaluation 2003 all nuclides G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729

Neutron Number N Proton Number Z In total: 1158 nuclides Atomic Mass Evaluation 2003  m/m < G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729

Neutron Number N Proton Number Z In total: 181 nuclides Atomic Mass Evaluation 2003  m/m < G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729

Neutron Number N Proton Number Z 133,134 Cs 85,87 Rb In total: 24 nuclides Atomic Mass Evaluation 2003  m/m < G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729

See: Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003) Mass measurement programs for radionuclides worldwide

 operating facilities  facilities under construction or test  planned facilities  TRIUMF Argonne   MSU  Jyväskylä GSI  Stockholm   LBL SHIPTRAP HITRAP ISOLTRAP REXTRAP ATHENA ATRAP WITCH JYFL TRAP SMILETRAP CPT LEBIT RETRAP TITAN MAFF TRAP  Munich CERN  RIKEN TRAP Penning traps at accelerators

Production of radioactive nuclides at ISOLDE

ISOLTRAP: Experimental setup buncher preparation trap precision trap 2m

B = 4.7 T B = 5.9 T 2 m G. Bollen, et al., NIM A 368, 675 (1996) F. Herfurth, et al., NIM A 469, 264 (2001) determination of cyclotron frequency (R = 10 7 ) removal of contaminant ions (R = 10 5 ) Bunching of the continuous beam ISOLTRAP: Experimental setup

B + q/m Principle of mass determination measurement of cyclotron frequency Superposition of strong homogeneous magnetic field weak electrostatic quadrupole field

B + q/m motional modes of ion stored in a Penning trap Principle of mass determination measurement of cyclotron frequency

Scan QP-excitation freq. rf about c Quadrupole excitation rf Time-of-flight (TOF) radial  axial energy Magnetron excitation Principle of mass determination Conversion of magnetron into cyclotron motion B z Trap MCP Detector passing B-field gradient after ejection

TOF spectrummean TOF Principle of mass determination Example: 85 Rb (900ms excitation duration)

TOF spectrummean TOF Principle of mass determination fit of theoretical line shape to the data Example: 85 Rb (900ms excitation duration)

Principle of mass determination cyclotron frequency of "unknown" nuclide cyclotron frequency of well-known nuclide determination of mass ratio

85 Rb 23 Na 39 K 133 Cs Stable alkali ions as mass references

C2C2 C3C3 C4C4 C4C4 C5C5 C6C6 C7C7 C8C8 C9C9 C 10 C 11 C 12 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 18 C 19 C 20 C 21 C 22 C1C1 K. Blaum et al., EPJ A 15, 245 (2002) Carbon clusters as mass references

Determination of the mass accuracy Combined carbon cluster cross-reference measurements m / u Relative mass accuracy limit: (  m/m) lim  8  A. Kellerbauer et al., EPJ D 22, 53 (2003)  m/m / 10 -8

ISOLTRAP mass measurements in Zn Nuclides measured in 2004/2005 Nuclides measured in 2004/ ,120, Cd 126 Xe, 136 Xe 127,128, Sn 84 Kr, Kr K, K 17 Ne, 19 Ne 22 Mg Na Highlights NuclideHalf-lifeUncertainty 17 Ne 22 Mg 35 K 109 ms 3.86 s 178 ms 530 eV 270 eV 530 eV 81 Zn 290 ms3.45 keV

Nucleosynthesis and r-process fusion in stars s-process r-process Sn Pb Ni protons neutrons courtesy: K. Blaum 50 82

ISOLDE target for Zn run courtesy: T. Stora et al. UC x target RILIS quartz transfer line protons

Yields at ISOLTRAP estimate for target/ion source 0.5%

Result for 81 Zn 81 Zn +

Preliminary result for mass excess Zn preliminary Zn m = A·m u + ME

2n separation energy AME2003 Zn

2n separation energy ISOLTRAP AME2003 Zn

131 Sn isomer AME2003 G. Audi et al.

Removal of contaminants for Sn measurements Sn Sn 34 S 127,128, Sn isobaric contaminants (Cs) Sn 34 S

Preliminary result for mass excess Sn preliminary M. Dworschak et al. 131 Sn ???

The mass of 17 Ne lightest nuclide measured at ISOLTRAP two-proton halo candidate: A. Ozawa et al., Phys. Lett B 334, 18 (1994) M.V. Zhukov et al., PRC 52, 3505 (1995) R. Kanungo et al., Phys. Lett. B 571, 21 (2003)

AME2003  m < 600 eV The mass of 17 Ne 17 Ne 17 Ne + T 1/2 = 109 ms Yield ISOLDE = 1000/s About 450 ions/h at ISOLTRAP m = A·m u + ME

The two-proton halo candidate 17 Ne How to probe if 17 Ne is a proton halo? 17 Ne Isotope-shift measurements: (COLLAPS experiment, Neugart et al.) Mass uncertainty of  m /m  1·10 -7 (~ 2 keV) required!  nuclear charge radii Via the nuclear charge radii!

Collaps upper limit Collaps lower limit Finite range Droplet Preliminary result without new mass values PhD thesis W. Geithner

Fermi  -decays between analog states of spin J  =0 + and isospin T=1 conserved vector current hypothesis: ft = const M V Fermi-matrix element G V coupling constant for semileptonic weak interaction J.C. Hardy and I.S. Towner, Phys. Rev. C 71, (2005) Conserved vector current (CVC) hypothesis radiative corrections  R and  R isospin not exact symmetry: isospin-symmetry-breaking correction  C

Superallowed  -decay nuclides - 9 best known cases experimental data needed: Q BR, t 1/2 f = f (Z,Q) t = f (BR,t 1/2 ) 10 C 14 O 26m Al 34 Cl 38m K 42 Sc 46 V 50 Mn 54 Co T z = -1 T z = 0 statistical rate function partial half-life J.C. Hardy and I.S. Towner, Phys. Rev. C 71, (2005)

I.S. Towner and J.C. Hardy, Phys. Rev. C 66, (2002) Superallowed  -decay nuclides - 9 best known cases (8) s

Cabibbo-Kobayashi-Maskawa (CKM) matrix Unitarity 95% 5% 0.001%V ub V ud V us Contribution to the unitarity: Unitarity of CKM matrix weak interaction coupling constant G F from muon decay

discrepancy by more than 2  Further experimental data as well as refined calculations of correction terms needed I.S. Towner and J.C. Hardy, Phys. Rev. C 66, (2002) Unitarity of CKM matrix Result:

The mass of 22 Mg 10 frequency ratios measured 16 relations included in  2 adjustment M. Mukherjee et al., Phys. Rev. Lett. 93, (2004). 22 Mg +

Solving the mass discrepancy of 22 Mg 200 eV CPT J. Clark et al. M. Mukherjee et al., Phys. Rev. Lett. 93, (2004).

3072.7(8) s J.C. Hardy and I.S. Towner, Phys. Rev. C 71, (2005) Updated values F. Herfurth et al., EPJA 15, 17 (2002) A. Kellerbauer et al., PRL 93, (2004) M. Mukherjee et al., PRL 93, (2004)

V ud (nuclear  -decay) = (4) V us (kaon-decay) = (26) V ub (B meson decay) = (47) Present status: i.e. CKM not unitary at the 98% confidence level (non-)unitarity of CKM-matrix J.C. Hardy and I.S. Towner, Phys. Rev. C 71, (2005) Updated values for CKM unitarity test V us (K + -decay) = (30)  (Brookhaven E865) V us (K + -decay) = (22) (Fermilab E832) new result for V us :

Outlook for CKM unitarity test T z = -1 T z = 0 extend investigation to other nuclides increase precision on nine best ft-values

J.C. Hardy and I.S. Towner, Phys. Rev. C (2005) Outlook for CKM unitarity test

New experimental methods and technical development How to improve ISOLTRAP ?

New ion sources new ion source Pierre Delahaye

New ion sources carbon cluster ion source Nd:YAG Manas Mukherjee

Preparation of ions - removal of isobaric contaminants cooling resonance of 41 K + removal of 39 K + by dipolar excitation

New detection schemes excitation with Ramsey technique Sebastian George

Drift tube Window (open access) Channeltron detector Spare MCP detector Feed- through Ions from the precision trap New detector setup

Detection efficiency MCP Detection efficiency Channeltron Better statistical uncertainty  30%  90% Get access to shorter- lived nuclides (  50mm) (  12mm) MCP Comparison of efficiency MCP/Channeltron

new detector CEM MCP Number of Ions per Pulse Time / ms Comparison of efficiency

Stabilization of magnetic field temperature and pressure stabilization

Stabilization of magnetic field temperature frequency c Maxime Brodeur

Stabilization of magnetic field including linear drift of magnetic field

New temperature-stabilization system Heater Fan temperature sensor Slobodan Djekic and Melanie Marie-Jeanne

New temperature regulation +/- 15mK

+/- 0.1 mbar New pressure regulation He recovery line

+/- 5mK New temperature regulation - first results

Isomerism in 68 Cu: as produced by ISOLDE isolation of the 1 + ground state isolation of the 6 - isomeric state Resolving power of excitation: R ≈ 10 7  Population inversion of nuclear states  Preparation of an isomerically pure beam J. Van Roosbroeck et al., Phys. Rev. Lett. 92, (2004) K. Blaum et al., Europhys. Lett. 67, 586 (2004) Isomer Separation: 68 Cu

Isomerically pure ion beam Tape station Beta-counter Trap assisted spectroscopy

Decay in the buffer-gas-filled preparation trap ZXZX A Z-1 Y A e+e+ + produced at ISOLDE not produced at ISOLDE 20 cm z (mm) 4 He e+e+ e+e+ ZXZX A ZXZX A e+e+ ZXZX A Z-1 Y A A A ZXZX A e+e+ ZXZX A e+e+  Make more radioactive species available  Nearly simultaneous  c measurement of mother and daughter nuclei  Test candidate: 37 K  37 Ar  Make more radioactive species available  Nearly simultaneous  c measurement of mother and daughter nuclei  Test candidate: 37 K  37 Ar A novel idea: In-trap decay mass spectrometry Herlert et al., New J. Phys. 7, 44 (2005)

In-trap decay results mass spetrometry of daughter nuclide 37 K + 37 Ar + Elements/isotopes which are in principle not produced are accessible!

Result for doubly charged (stable) xenon ions Herlert et al., IJMS 251, 131 (2006)

mass determination with a time-of-flight cyclotron resonance detection technique limited by: nuclide production rate above 100 s -1 half-life (so far) over 65ms systematic uncertainty limit: Summary so far mass measurements on more than 300 radionuclides at ISOLTRAP for tests of nuclear structure, mass models, a contributions to a CKM unitarity test,... new techniques and development: in-trap decay method, new ion sources and detector, magnetic field stabilization, new excitation schemes,... (  m/m) lim  8  10 -9

Thanks to my co-workers: G. Audi, S. Baruah, D. Beck, K. Blaum, G. Bollen, M. Breitenfeldt, P. Delahaye, M. Dworschak, S. George, C. Guénaut, U. Hager, F. Herfurth, A. Kellerbauer, H.-J. Kluge, D. Lunney, M. Marie-Jeanne, M. Mukherjee, S. Schwarz, R. Savreux, L. Schweikhard, C. Weber, C. Yazidjian,..., and the ISOLTRAP and ISOLDE collaboration Thanks for the funding and support: BMBF, GSI, CERN, ISOLDE, EU networks EUROTRAPS, EXOTRAPS, and NIPNET Thanks a lot for your attention! Not to forget …