Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 15, 2014 Energy and Power Optimization
Previously Three components of power –Static –Short circuit –Capacitive switching P tot = P static + P sc + P dyn Penn ESE370 Fall DeHon 2
Static Penn ESE370 Fall DeHon 33 CMOS circuit in steady-state –Leaks subthreshold current determined by off device –P static = V dd × I static
Switching (Charging) Penn ESE370 Fall DeHon 44 CMOS circuit switching output from 0 1 –Spends energy CV dd 2 charging load
Switching (Short Circuit) P=IV When: Vin=Vdd/2 Vth<Vin<Vdd-|Vthp| Penn ESE370 Fall DeHon 5
Today Power Sources –Static –Short Circuit –Capacitive Switching Reducing Switching Energy Energy-Delay tradeoffs (time permit) Penn ESE370 Fall DeHon 6
Switching Quick Review Penn ESE370 Fall DeHon 7
Switching Currents I switch (t) = I sc (t) + I dyn (t) I(t) = I static (t)+I switch (t) Penn ESE370 Fall DeHon 8 I sc I static I dyn
Charging I dyn (t) –I ds = f(V ds,V gs ) –and V gs, V ds changing Penn ESE370 Fall DeHon 9
Look at Energy [focus on I dyn (t)] Penn ESE370 Fall DeHon 10
Energy to Switch Penn ESE370 Fall DeHon 11
Capacitor Charge Penn ESE370 Fall DeHon 12
Capacitor Charging Energy Penn ESE370 Fall DeHon 13
Switching Power Every time output switches 0 1 pay: –E = CV 2 P dyn = (# 0 1 trans) × CV 2 / time # 0 1 trans = ½ # of transitions P dyn = (# trans) × ½CV 2 / time Penn ESE370 Fall DeHon 14
Short Circuit Power Penn ESE370 Fall DeHon 15
Preclass 1 Current flow during switching? Penn ESE370 Fall DeHon 16
Short Circuit Power Between V TN and V dd -V TP –Both N and P devices conducting Roughly: Penn ESE370 Fall DeHon 17
Peak Current Penn ESE370 Fall DeHon 18 I peak around V dd /2 –If |V TN |=|V TP | and sized equal rise/fall
Short-Circuit Energy Penn ESE370 Fall DeHon 19
Short-Circuit Energy Penn ESE370 Fall DeHon 20
Short Circuit Energy Looks like a capacitance –Q=I×t –Q=CV Penn ESE370 Fall DeHon 21
Short Circuit Energy and Power Every time switch –Also dissipate short-circuit energy: E = CV 2 –Different C = C sc –C cs “fake” capacitance (for accounting) Largely same dependence as charging Penn ESE370 Fall DeHon 22
Switching Energy Penn ESE370 Fall DeHon 23
Reminder Output switches 0 1 charge output from Vdd Output switches 1 0 discharge output to ground – no current from Vdd Penn ESE370 Fall DeHon 24
Data Dependent Activity Consider an 8b counter –How often do each of the following switch? Low bit? High bit? –Average switching across all 8 output bits? Assuming random inputs –Activity at output of nand4? –Activity at output of xor4? Penn ESE370 Fall DeHon 25
Gate Output Switching (random inputs) Penn ESE370 Fall DeHon 26 Prev. Next 0 1
Charging Power P dyn = (# trans) × ½CV 2 / time Often like to think about switching frequency Useful to consider per clock cycle –Frequency f = 1/clock-period P dyn = (#trans/clock) ½CV 2 f Penn ESE370 Fall DeHon 27
Switching Power P dyn = (#trans/clock) ½CV 2 f Let a = activity factor a = average #tran/clock P dyn = a½CV 2 f P sc = aC sc V 2 f Penn ESE370 Fall DeHon 28
Total Power P tot = P static + P sc + P dyn P dyn + P sc = a(½C load +C sc )V 2 f P tot ≈ a(½C load +C sc )V 2 f+VI ’ s (W/L)e -Vt/(nkT/q) Penn ESE370 Fall DeHon 29
Dynamic Power Penn ESE370 Fall DeHon 30
Reduce Dynamic Power? P dyn = a × ½CV 2 f How do we reduce dynamic power? Penn ESE370 Fall DeHon 31
Slow Down What happens to power contributions as reduce clock frequency? What suggest about V th ? Penn ESE370 Fall DeHon 32
Reduce V What happens as reduce V? –Delay? –Energy? Static Switching Penn ESE370 Fall DeHon 33
Penn ESE370 Fall DeHon 34 Old Reduce V (no vsat) gd =Q/I=(CV)/I I d =( C OX /2)(W/L)(V gs -V TH ) 2 gd impact? gd α 1/V
Saturation Observe Ignoring leakage Penn ESE370 Fall DeHon 35
Penn ESE370 Fall DeHon 36 Reduce V (velocity saturation) gd =Q/I=(CV)/I I ds =( sat C OX )(W)(V gs -V TH -V DSAT /2)
Reduce Short-Circuit Power? P sc = aC sc V 2 f Penn ESE370 Fall DeHon 37
Energy vs. Power? Which do we care about? –Battery operated devices? –Desktops? –Pay for energy by kW-Hr? Penn ESE370 Fall DeHon 38
Increase V th ? What is impact of increasing threshold on –Delay? –Leakage? Penn ESE370 Fall DeHon 39
Penn ESE370 Fall DeHon 40 Increase V th gd =Q/I=(CV)/I I ds =( sat C OX )(W)(V gs -V TH -V DSAT /2)
Idea Short circuit energy looks like more capacitance for switching energy Tradeoff –Speed –Switching energy –Leakage energy Energy-Delay tradeoff: E 2 ? E Penn ESE370 Fall DeHon 41
Admin HW6 Due tomorrow Project 1 out –Milestone piece due in one week –Full Report in two weeks –That means you need to be starting on it now…and working on it all next week Read assignment today Lecture Friday Penn ESE370 Fall DeHon 42