Recent progress in the synthesis and characterization of uranium carbide compounds. SCR/CSM, Université de Rennes1, UMR CNRS 6226 Institut de Physique.

Slides:



Advertisements
Similar presentations
Summary of NC200 work Imran & Norli Updated: 2/8/2007.
Advertisements

HIAT 2009, 12 June 2009, Venezia, Italy 1 Heavy ion irradiations of UMo7/Al nuclear fuels H. Palancher, E. Welcomme, Ph. Martin, C. Sabathier, C. Valot.
Novel approach to plasma facing materials in nuclear fusion reactors V. Livramento1, J.B. Correia1, D. Nunes3, P.A. Carvalho3, H. Fernandes2, C. Silva2,
Reaction kinetics and phase segregation in the 3 NiO + 2 Al → 3 Ni + Al 2 O 3 thermite system Dominique Vrel 1,3, Patrick Langlois 1, Ellen M. Heian 2,3,
1 Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud C. Lau et al., ECOS-EURISOL joint Town Meeting, October 2014  The context.
Ceramic Routes for Fabrication of SiC f /SiC Composites S. Novak 1, G. Dražić 1. K. Mejak 1, T. Toplišek 1, T. Žagar 2, M. Ravnik 2 1 Department for Nanostructured.
A Non-Aqueous Solution Synthesis of Boron Carbide by Control of In-Situ Carbon J. L. Watts a,b, Ian D. R. Mackinnon a, Peter C.Talbot a,b, and Jose A.
SYNTHESIS AND ELECTRICAL CHARACTERIZATION OF BULK FULLY DENSE NANOCRYSTALLINE ELECTROLYTES PREPARED BY HIGH-PRESSURE SPARK PLASMA SINTERING U. Anselmi.
The Effect of Pressure on the Microstructure and Mechanical Properties of Spark Plasma Sintered Silicon Nitride Anne Ellis, Leah Herlihy, William Pinc,
Outlook for the Requirements of the Nuclear Power Plant Irradiation Test in China SONG DANRONG Nuclear Power Institute of China.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
Atom Probe Tomography of ODS steels containing Hf 2 nd ODDISSEUS Workshop. 22 nd March, 2015 Maria A Auger Postdoctoral Research Assistant Department of.
3rd review meeting New Generation Thermal Barrier Coating A. Bhattacharya V. Shklover W. Steurer.
Structural response of SiC and PyC on swift heavy ion irradiation
X. Liu & M. Le Flem et al. – ICC2, 29 June -4 July 2008 Primary Research on Ion Irradiation of Ti 3 SiC 2 DMN/SRMA 1 Nanoindentation measurements and TEM.
National Science Foundation B3CB3CB 4.3 CB5CB5CB 6.5 CB 10 CB 12 C Boron carbide (typically represented as B 4 C) has a crystal structure that consists.
Catalysts in SOFC Use of Raney Nickel in Infiltration at Anode Advisors: Professors Trumble and Slamovich.
N_TOF fission data of interest for ADS
CEC/ICMC 2015 CrMnFeCoNi High Entroy Alloys prepared by Combution Synthesis under High Gravity Jiangtao Li Technical Institute of Physics and Chemistry.
OVERVIEW Material Irradiation Damage Studies at BNL BLIP N. Simos and H. Kirk, BNL K. McDonald, Princeton U N. Mokhov, FNAL (Oct. 20, 2009) (BLIP = Brookhaven.
Lead Technology Task 6.2 Materials for mechanical pump for HLM reactors M. Tarantino – ENEA Work Package Meeting – ENEA Bologna, November 17th, 2010.
Surface Analysis Surface interface controls many aspects of chemistry
Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques.
Ayhan EROL, Ahmet YONETKEN and Mehmet CAKMAKKAYA
Subprogramme 6: Physical modelling and separate effect experiments for fuels (M4F) Marjorie Bertolus CEA, DEN, Centre de Cadarache SP6 coordinator.
ISOL_HT: Thermal and Mechanical Properties of Materials at High Temperature: Experimental set-up development and measurements A Letter Of Intent for FP7.
Nitride Fuel and Pyrochemical Process Developments for Transmutation of Minor Actinides in JAERI Masahide Takano, Mitsuo Akabori, Kazuo Minato, Yasuo Arai.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
What do we expect from DAFS ? DIFFABS beamline setup Perspectives Simultaneous DAFS and XAFS analyses to evidence the Y- and Ti- species in nano-structured.
Tshepo Mahafa P-LABS Necsa 1 CHARGED PARTICLE IRRADIATION EFFECTS ON ZIRCALOY-4 Necsa_Wits Workshop, 10 – 11 September 2015, Necsa, Pelindaba.
Growth Control of Li 2+x TiO 3+y for an Advanced Tritium Breeding Material The University of Tokyo School of Engineering, Department of Nuclear Engineering.
Process stages on the grower and link for main grower units with required process parameters.
Research performed at UNLV on the chemistry of Technetium in the nuclear fuel cycle 1. Separation U/Tc and synthesis of solids form 2. Synthesis and characterization.
FAST NEUTRON IRRADIATION-INDUCED DAMAGE ON GRAPHITE AND ZIRCALOY- 4 TSHEPO MAHAFA University of Johannesburg Supervisor: Dr Emanuela Carleschi (UJ) Co-Supervisor:
04/03/ Stefano Corradetti ActiLab Closing Meeting ActiLab Activities at INFN Stefano Corradetti and Alberto Andrighetto SPES Target Group.
G. Lopes, A. Ferreira, A.P. Gonçalves and J.B. Branco Instituto Tecnológico e Nuclear, Estrada Nacional 10, Sacavém, Portugal Unidade de Ciências.
G. Lopes, A. Ferreira, A. P. Gonçalves and J. B. Branco Instituto Tecnológico e Nuclear, Estrada Nacional 10, Sacavém, Portugal Unidade de Ciências.
16th International Conference on composite Materials July 8-13,2007 Kyoto International Conference Center, Kyoto, Japan Synthesis of 0.95MgTiO CaTiO.
2. Materials Two compositions were investigated APS: within the immiscibility gap NoAPS: outside the immiscibility gap APS: 67SiO 2.11TiO 2.22BaO NoAPS:49SiO.
ERMSAR 2012, Cologne March 21 – 23, 2012 High temperature reaction between UO 2 and sea salt deposit M. Takano 1, T. Nishi 1, M. Kurata 1, M. Amaya 2,
PREPARATION OF ZINC-DOPED LANTHANUM STRONTIUM GALLATE SOLID ELECTROLYTE USING A REACTION-SINTERING PROCESS Yi-Cheng Liou*, Chung-Che Lan, Song-Ling Yang.
Prototype target tests with the ISOLDE Tape Station Tania M. Mendonca.
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
11 IPNO, ActILab kick-off meeting – Contribution CERN ActILab kick-off meeting CERN Contribution Alexander Gottberg.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Welcome to the CHARMS See – Tea Saturday, March 05, 2016 Comparison of ISOLDE yields with calculated in- target production rates Strahinja Lukić,
BENE/EURISOL-DS Joint Meeting, CERN, SwitzerlandFebruary 22, Progress in the Liquid Mercury Multi-MW Target Design Studies Y. Kadi On behalf of.
Applied Superconductivity at UNIGE Overview of the activities Départment de Physique de la Matière Condensée & Départment de Physique Appliquée Université.
Kaunas University of Technology Department of Mechanical Engineering and Design T450M105 HIGH TEMPERATURE MATERIALS INTERMETALLICS Professor Submitted.
Investigation of the Performance of Different Types of Zirconium Microstructures under Extreme Irradiation Conditions E.M. Acosta, O. El-Atwani Center.
T. Stora ISCC – Nov 2014 (TISD) Beam developments ‏ Thierry Stora.
Students'coffee - 16th meeting Nanostructured target materials for intense secondary beam production at CERN-ISOLDE João Pedro Ramos 11 th of March 2013.
Université de Mons 0.2 Guillaume JEAN | Service de Science des Matériaux Manufacture of macroporous ceramics by spark plasma sintering G. Jean 1, V. Sciamanna.
Processing & Testing Electroceramics EBB 443-Technical Ceramics Dr. Julie Juliewatty Mohamed School of Materials and Mineral Resources Engineering Universiti.
Giuseppe Celentano, Fabio Fabbri, Angelo Vannozzi
Production of NTCR Thermistor Devices based on NiMn2O4+d
Innovative Martensite-Free Precipitation Hardened Tool Steel Composites with Improved Fracture Toughness   Waleed Elghazaly (1), Omyma Elkady (2), Saied.
Relationship between microstructure and experimental conditions
Properties of Boron Subcarbide (B13C2) Synthesized by Self-propagating High-temperature Synthesis (SHS)   Lembit Kommel, Raido Metsvahi and Karl Kolju.
Measurement of the fission cross-section of 240Pu and 242Pu at CERN’s n_TOF facility CERN-INTC , INTC-P-280 Spokespersons: M. Calviani (CERN),
CHEM 312: Lecture 19 Forensics in Nuclear Applications
New radiochemical technologies of spent nuclear fuel reprocessing
NOVEL TRENDS IN FUEL AND MATRIX ALLOYING TO REDUCE INTERACTION
Mechanisms in the Cleaning of Aluminium Melts with Flux Preparations
Ming Tang, Los Alamos National Laboratory, USA Eric R. Vance,
Pebble Bed Reactors for Once Trough Nuclear Transmutation
M. Biglar, F. Stachowicz, T. Trzepieciński
Silicon Carbide- Boron Carbide Composites
XI Conference on Reactor Materials May , 2019, Dimitrovgrad
A.A. Bochvar High-technology Research Institute of Inorganic Materials
Presentation transcript:

Recent progress in the synthesis and characterization of uranium carbide compounds. SCR/CSM, Université de Rennes1, UMR CNRS 6226 Institut de Physique Nucléaire, IPN-Orsay, Université Paris-Sud ieme Journées des Actinides 2 nd Workshop an Actinide Targets Genève, 27mars -01 avril

Recent progress efforts on the synthesis and characterization sintering of uranium monocarbide compounds. SCR/CSM, Université de Rennes1, UMR CNRS 6226 Institut de Physique Nucléaire, IPN-Orsay, Université Paris-Sud ieme Journées des Actinides 2 nd Workshop an Actinide Targets Genève, 27mars -01 avril

Outline : Part I : Objective of the study A- Frame of the work (GFR-He, ISOL-target) B – Aim the study Part II : Synthesis of uranium monocarbide. A – Overview on the binary phases diagram U-C B – Melting of U and C using an arc furnace C – Carbothermal reduction at high temperature Part III : Sintering of dense UC pellets. A- Natural sintering B- Hot pressing of powder. Part IV : Conclusions and future work A- Synthetic routes B- sintering of carbides

Gen-IV : Gas-Fast Neutron Reactors (Allegro) (U, Pu, MA*)C/ SiC-SiCf WORKING CONDITIONS : GFR-He concept -T°:- working conditions : °C - incidental / accidental conditions : °C for one hour, without melting -η : - fast neutrons, fluence η/m 2, - Cycle - 3 years ASSEMBLY : Needle-like STRUCTRAL & MATRIX MATERIALS : SiC-based meterials LINER M : W, (W-Re) alloys FUEL : (U, Pu)C solid solution, with insertion of MA* - atomic ratio of the composition : U : Pu : MA* of : : compromise between high densification and porosity * Minor actinides : Np, Am, Cm Needle-like assembly Liner : M Improve the performance of reactors and fuel cycles with current nuclear system (security, resources sustainability, reprocessing,..)

Targets for Isotope Separation On Line (ISOL) facilities ISOL target of 3 rd generation (SPIRAL2) INCIDENT BEAM : -Energetic light (deutons) or heavy ions or thermal neutrons - Properly focused REACTIONS : -spallation, fission or fragmentation mechanisms EJECTION FROM THE TARGET : -ionized, accelerated, purified WORKING CONDITIONS -T° # 2000°C under high vacuum - heavy irradiation TARGET - composition : UC x Mixed UC / UC 2 or UC 2 + nC. - Compromise between density and open porosity Working temperature, T = 2000°C Production of rare-isotope beams for nuclear physics Pellets are pilled up in a graphite container

New generations of nuclear systems Gen IV – GFR-He reactors & ISOL facilities CHALLENGES : Comprehensive study Advanced materials working under extreme conditions (T°, η, D+, … long-time.) Stability / Evolution (Fuel or Target) under working conditions microstructure of the pellets : grain sizes, morphology porosity, distribution of the porosity Identify the main parameters which controlled the microstructure of UC pellets. Prospective works on : - synthetic routes, - microstructural parameters of the powder, - sintering mechanisms.

Binary phase diagram of U-C UC : - congruent melting compound T°f # 2530°C - solid solution UC-UC 2 at high T° - line compound at low T° - NaCl type of structure, a = (3) R. Benz, C.G. Hoffmann, G.N. Rupert, High Temp. Science, 1 (1969) 342.

Synthesis of uranium monocarbide Arc-melting : U + n C g UC n n = 1 T > 2600°C Easy to melt High purity of the product Reproducible Fast (20 min) Ingots of 0.5 – 3g Need to be grinded

Rietveld analysis of a samples with nominal composition UC 1.02 Detection limit below 1 wt % of a secondary phase, UC 2.

SEM observations of a UC Ingot SEM observations : - Dense materials, - Low porosity - Well crystallized sample : brittlee & easy to grind

Distribution of the grain size De0.375 à2000 Nombres100 Moyenne:1.594 Médiane:1.443 D(3,2):7.068 Moyenne/Médiane:1.105 Mode:1.204 Intervalle à 95%:0.544 Intervalle à 95%:4.671 Ecart-type:1.731 Variance:2.995 C.V.:0 Skewness:1.083 Kurtosis:1.498 Surface spécifique m 2.g -1 (BET)2.4 Grinded UC ingots

Carbothermal reduction of uranium oxide Reactions (1450 < T < 1900°C): UO C  UC + 2 CO ↑ - Reduction of U 3 O 8 under H 2 flux - Control of the stoichiometry of oxygen ! Experimental procedure : UO 2 + nC  pellets (  8, 10)  C graphite crucible n = 2, 2.5, 3, 3.5, 4, °C ( hours) 300°C/h High temperature furnace with C graphite resistor Influence of : Temperature initial composition (n)

Carbothermal reduction of uranium oxide - single phase of UC n = 3 T = 1700°C for 3h No significant diffrence on the XRD powder patterns between the arc-melting method and the carboreduction one Arc-melted sample T = 1900°C for 1h

SEM observations of a UC compact x 100 x 1000x 5000 Large cavities : gas released Grain sizes [1-5] µm UO 2 + 3C UC T = 1700°C, t = 3h Synthesis and sintering in one step impossible (mechanical properties)

Size of the UC particules ! De0.375 à2000 Nombres100 Moyenne: Médiane: D(3,2): Moyenne/Médiane: Mode: Intervalle à 95%: Intervalle à 95%: Ecart-type: Variance: C.V.:0 Skewness: Kurtosis: Surface spécifique m 2.g -1 (BET)2.5 No significant diffrence on the grain size and specific area of the powders obtained by arc-melting and by carboreduction.

Natural sintering of UC Pellets Sintering in a H.F. furnace 7,5 5,8 5,5 7,5 V = cm² d measured = g/cm3 d calculated = 13,68 g/ cm3 C = 75,0% Pellet n° 2 : cold pressing 5 tonnes/ cm² Densification about 75 % is a reproducible value over several experiments 1500 < T < 1900°C

SEM observations of a UC sintered pellet x 200 x 500 x 5000 Large cavities : Small single crystals # 50 µm T Solid state diffusion favor the grain growth T = 1900°C, 1 h

Hot press sintering of UC Pellets Sintering in a H.P. furnace Mold of C graphite Sintering conditions : 1500 °C for 2 h under rough vacuum with 80 MPa. Raw surface  = 10,3 mm h = 3,6 mm Densification ~ 85%

SEM observations of a H.P UC pellet x 200 x 2000 Black area : cavities Grain size about 5 µm x 5000 Lamellar morphology - free carbon - UC 2

Conclusion - Preparation of single phase UC powders : NaCl type, a = 4.951(2) Å, [0-5]µm, - arc-melting, n = 1, - carbothermic reduction, (T = 1700°C, n = 3, t =3h) -Sintering : competition between grain growth / porosity -Temperature favors the grain growth only -Pressure may help to limit the growth of the grain methodic procedures not easy task, refractory material Synthesis by carbothermic reduction Sintering of UC pellets Sintering of uranium carbides great challenge

Acknowlodgements GROUPEMENT DE RECHERCHE CNRS – CEA/DEN -EDF - ANDRA R. ELOIRDI F. de BRUYCKER S. MOREL D. MANARA E. COLINEAU B. FOUREST N. DACHEUX Merci de votre attention et de votre patience ! GROUPEMENT DE RECHERCHE CEA CNRS EDF AREVA-NP AREVA-NC