Handling 3D Data in the Virtual Observatory

Slides:



Advertisements
Similar presentations
Characterisation of observations François Bonnarel, Mireille Louys, Anita Richards, Alberto Micol, Jonathan McDowell, Igor Chilingarian, et al.
Advertisements

European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado SLAP Implementations Sep 2006, Moscow, Russia Simple Line.
IVOA, Pune India September Data Access Layer Working Group Pune Workshop Summary Doug Tody National Radio Astronomy Observatory International.
DM WORKING GROUP MADRID OCT WG STATUS Spectral DM: document updated and reformatted Spectral DM Java library prototype nearly ready Characterization:
Characterization 2 and Provenance data models. Use cases and first roadmap F.Bonnarel (CDS)
Interop May 2007 Spectrum Data Model Jonathan McDowell.
IVOA, Pune September Data Access Layer Working Group SSA Overview and Status Doug Tody National Radio Astronomy Observatory International V.
IVOA Interop meeting 05/17/2006 Victoria F.Bonnarel (CDS) Generic Data discovery, Cube acces: CGPS Archive browser F.Bonnarel,T.Boch,D.Durand (CDS, CADC)
2004 Sepjcm/sao/nvo1 Spectrum Data Model Jonathan McDowell CfA US National Virtual Observatory.
SIAP Extensions F.Bonnarel, T.Boch, P.Fernique M.Louys, P.Osuna,J.Salgado.
IVOA, Kyoto May Data Access Layer Working Group Working Group Report and Summary Doug Tody National Radio Astronomy Observatory International.
September 13, 2004NVO Summer School1 VO Protocols Overview Tom McGlynn NASA/GSFC T HE US N ATIONAL V IRTUAL O BSERVATORY.
September 13, 2004NVO Summer School1 VO Protocols Overview Tom McGlynn NASA/GSFC T HE US N ATIONAL V IRTUAL O BSERVATORY.
6 September 2008NVO Summer School 2008 – Santa Fe1 DAL Clients: Scripting Data Access with Python Ray Plante T HE US N ATIONAL V IRTUAL O BSERVATORY.
NVO Summer School, Santa Fe Sept Access to Spectroscopic Data In the VO Doug Tody (NRAO/US-NVO ) I NTERNATIONAL V IRTUAL O BSERVATORY A LLIANCE.
NVO Summer School, Aspen Sept Data Access Layer Working Group Image and Spectral Access Doug Tody National Radio Astronomy Observatory National.
An International Virtual Observatory data exchange format VOTable Roy Williams François Ochsenbein Clive Davenhall Daniel Durand Pierre Fernique David.
UCD inheritance in VOTables François Ochsenbein. 11 May 2003 François Ochsenbein Summary 1. Alternative propositions 2. impact of the notion of column.
CASDA Virtual Observatory CSIRO ASTRONOMY AND SPACE SCIENCE Arkadi Kosmynin 11 March 2014.
14 October 2003ADASS 2003 – Strasbourg1 Resource Registries for the Virtual Observatory R.Plante (NCSA), G. Greene (STScI), R. Hanisch (STScI), T. McGlynn.
BinX and Astronomy Bob Mann Institute for Astronomy and National e-Science Centre.
IVOA Interoperability Meeting – Victoria, BC – 18 May 2006 Data Discovery and Metadata Query Using Characterisation DM Igor Chilingarian (CRAL Observatoire.
OSN Archive: Current status and future implementations José Miguel Ibáñez Instituto de Astrofísica de Andalucía - CSIC Sierra Nevada Observatory First.
2003 April 151 Data Centres: Connecting to the Real World Clive Page.
VOTable: Tabular Data for Virtual Observatory François Ochsenbein Roy Williams Clive Davenhall, Daniel Durand, Pierre Fernique, Robert Hanisch, David Giaretta,
S. Derriere et al., ESSW03 Budapest, 2003 May 20 UCDs - metadata for astronomy Sébastien Derriere François Ochsenbein Thomas Boch CDS, Observatoire astronomique.
3D Spectroscopy in the Virtual Observatory: Current Status Igor Chilingarian (Observatoire de Paris, France/SAI MSU, Russia) Ivan Zolotukhin (SAI MSU,
The VAO is operated by the VAO, LLC. VAO: Archival follow-up and time series Matthew J. Graham, Caltech/VAO.
Characterisation Data Model applied to simulated data Mireille Louys, CDS and LSIIT Strasbourg.
The need for a stronger IVOA review process An SDM+SSA correctness assessment Bruno Rino, Nov
16-17 Oct 2003IVOA Data Access Layer, Strasbourg IVOA Data Access Layer (DAL) Working Group Doug Tody National Radio Astronomy Observatory International.
Mapping between SOS standard specifications and INSPIRE legislation. Relationship between SOS and D2.9 Matthes Rieke, Dr. Albert Remke (m.rieke,
Spectroscopy in VO, ESAC Mar Access to Spectroscopic Data In the VO Doug Tody (NRAO/US-NVO ) for the IVOA DAL working group I NTERNATIONAL.
INTEGRAL FIELD SPECTROSCOPY AT THE VLT STAR (CLUSTER) FORMATION IN 3D : INTEGRAL FIELD SPECTROSCOPY AT THE VLT Markus Kissler-Patig (Instrument Scientist.
IVOA Interop, SL de El Escorial, Oct IVOA DAL - Madrid DAL WG Summary October 7, 2005.
Strasbourg astronomical Data Centre (DS) Françoise GENOVA.
Federation and Fusion of astronomical information Daniel Egret & Françoise Genova, CDS, Strasbourg Standards and tools for the Virtual Observatories.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado IVOA Interop meeting Strasbourg, May 2009 (1/12) SLAP v0.9.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Pedro OSUNA ESAC ADT Team VO-tech Cambridge 2004 VOSpec: A Tool to Handle.
Victoria, May Closing plenary Theory Interest Group Closing plenary Victoria, May
Aladin, VO standards, spectra and datacubes T.Boch, F.Bonnarel, P.Fernique (CDS, Aladin development group)
11 F.Bonnarel (CDS) Kyoto IVOA Interoperabilty Meeting DAL: a mechanism for Metadata extensions F.Bonnarel In behalf of T.Boch, M. Louys, P.Fernique (CDS)
AstroGrid-D and GAVO AstroGrid-D: Infrastructure Network, Computing Resources Grid-Technology, Middleware GAVO: Interoperability of archives.
The International Virtual Observatory Alliance (IVOA) interoperability in action.
SAG Meeting – Postdam – November The XCATDB: run by Saada OAS Contribution The.
Workshop on How to Publish Data in VO ESAC, June 25-June DAL (Data Access Layer) protocols Jesus Salgado
Determination of stellar fundamental parameters using Artificial Intelligence techniques. Luis M. Sarro. Dpto. Inteligencia Artificial, UNED / Spanish.
German Astrophysical Virtual Observatory Overview and Results So Far W. Voges, G. Lemson, H.-M. Adorf.
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Jesús Salgado AIDA Tech. Meeting Strasbourg, March 2009 (1/8) WP7 Task.
12 Oct 2003VO Tutorial, ADASS Strasbourg, Data Access Layer (DAL) Tutorial Doug Tody, National Radio Astronomy Observatory T HE US N ATIONAL V IRTUAL.
Obscore DM v 1.1 Mireille Louys, Doug Tody, Patrick Dowler, Daniel Durand, Laurent Michel, François Bonnarel, Alberto Micol and the IVOA DataModel working.
Mireille Louys et al., OV-France Theory WG meeting, LYON, June DALIA : an observation vs simulation comparison frame work What could be a Model.
Determination of radio spectra from catalogues and identification of Gigahertz peaked sources (GPS) from the Virtual Observatory Bernd Vollmer, S. Derriere,
European Space Astronomy Centre (ESAC) Villafranca del Castillo, MADRID (SPAIN) Pedro Osuna VOSpec Kyoto May 2005 VOSpec: A Tool to Handle VO-Compatible.
Publishing Combined Image & Spectral Data Packages Introduction to MEx M. Sierra, J.-C. Malapert, B. Rino VO ESO - Garching Virtual Observatory Info-Workshop.
VO-enabled spectroscopy tools Ivo Busko Science Software Branch STScI.
Describing 3D Datasets Igor Chilingarian (CRAL Observatoire de Lyon/Sternberg Astronomical Institute of the Moscow State University) IVOA DM & DAL WG –
VO Data Access Layer IVOA Cambridge, UK 12 May 2003 Doug Tody, NRAO.
9/Dec/2010Interoperability meeting, Nara, Japan Characterisation v.2 use-cases Update on the full spectrum fitting Igor Chilingarian (CDS) on behalf of.
End of the Beginning for IVOA is now Roy Williams IVOA Technical Lead.
Science Gateway- 13 th May Science Gateway Use Cases/Interfaces D. Sanchez, N. Neyroud.
RichardsAMS_AIDA_WP7_T7_T11 EuroV_ Tech Forum AMS Richards, University of Manchester (UEDIN) WP7 T7 Radio Cubes Bonnarel, Harrison, Richards,
A.Zanichelli, B.Garilli, M.Scodeggio, D.Rizzo
Data Models: Plenary-1 Jonathan McDowell May 2006
What is FITS? FITS = Flexible Image Transport System
Integral Field Spectroscopy
Google Sky.
GENIUS CSIC contribution Enrique Solano
GhoSST (formerly STSP)
Presentation transcript:

Handling 3D Data in the Virtual Observatory ADASS XV – San Lorenzo de El Escorial – 4 Oct 2005 Handling 3D Data in the Virtual Observatory Igor Chilingarian (CRAL Observatoire de Lyon, France/SAI MSU, Russia) Francois Bonnarel (CDS Observatoire de Strasbourg, France) Mireille Louys (CDS Observatoire de Strasbourg, France) Jonathan McDowell (Harvard-Smithsonian CfA, USA)

What is 3D spectroscopy (1)? IFU Spectroscopy

What is 3D spectroscopy (2)? Scanning Fabry-Perot Interferometer Data Processing Phase Surface

Storing 3D Data in FITS Pure 3D data cube (for IFP data and for some IFU) 2D-image (one spectrum per row) + binary table  Euro3D Format Euro3D Format FITS binary data table: one row per spectrum Binary table describing shape of spatial elements (“spaxels”) Some mandatory metadata, including: common spectral WCS for all spectra, common spatial WCS for all spatial elements, meteo parameters during the observations, etc.

Characterisation DM Level 1 Coverage Resolution Sampling Spatial (pos) The basic part of the most general data model: Observation DM Provides a physical characterisation of a dataset Level 1 Coverage Resolution Sampling Spatial (pos) Location Ref.Value Temporal (time) Spectral (em) Observable (phot) Level 2 Coverage Resolution Sampling Spatial (pos) Bounds Temporal (time) Spectral (em) Observable (phot) Level 3 Coverage Resolution Sampling Spatial (pos) Support Temporal (time) Spectral (em) Observable (phot) Level 4 Coverage Resolution Sampling Spatial (pos) Map Temporal (time) Spectral (em) Observable (phot)

Characterisation: relation to STC

Characterising IFU datasets (1) Characterization[ucd=time]/Coverage/Location/coord/Time/Value is usually the only temporal-axis-related information preserved by the data processing pipelines Only first two levels (Location/Ref.Value and Bounds) should be provided for the whole dataset, because further levels become too difficult for understanding. The rest should be done for each individual IFU spectrum Characterization[ucd=pos]/Coverage/Location/coord/Position2D/Value2 Characterization[ucd=pos]/Resolution/ReferenceValue Characterization[ucd=pos]/Sampling/ReferenceValue Characterization[ucd=pos]/Coverage/Bounds/limits/LoLimit2Vec Characterization[ucd=pos]/Coverage/Bounds/limits/HiLimit2Vec

Characterising IFU datasets (2)

Characterising IFU datasets (2) Characterization[ucd=phot]/Coverage/Location/coord/Flux/Value Characterization[ucd=em]/Coverage/Location/coord/Spectral/Value Characterization[ucd=em]/Resolution/ReferenceValue  mean spectral resolution (FWHM) Characterization[ucd=em]/Sampling/ReferenceValue  mean sampling (usually constant) Characterization[ucd=phot]/Resolution/ReferenceValue  1 e- (for CCD) Characterization[ucd=phot]/Sampling/ReferenceValue  1 ADU (for CCD)

Characterising IFU datasets (2) Characterization[ucd=phot]/Coverage/Bounds/limits/LoLimit Characterization[ucd=phot]/Coverage/Bounds/limits/HiLimit Characterization[ucd=em]/Coverage/Bounds/limits/LoLimit Characterization[ucd=em]/Coverage/Bounds/limits/HiLimit Characterization[ucd=em]/Resolution/Bounds/limits can be computed using special technics Characterization[ucd=em]/Sampling/Bounds/limits are not defined Characterization[ucd=phot]/Resolution/Bounds/limits are [1e-,1e-] for CCD Characterization[ucd=phot]/Sampling/Bounds/limits are [1e-,1e-] for CCD

“Live” example: MPFS dataset

Accessing 3D Data SSAP 0.9 specifications allow to access any type of data described with any data model Delivering the 3rd and 4th levels of characterisation metadata can be done using binary extensions: output XML document will contain pointers to binary MIME-attachments Since the 2nd level is sufficient for most of the applications, data can be stored in Euro3D format within the archive

Summary At present 3D data in VO can be described using Characterisaton DM Latest version of the Simple Spectral Access Protocol provides all the necessary functionality for accessing 3D data Euro3D format developed especially for IFU data can be used as a format for storing such type of data by the datacenters Evenly sampled 3D data cubes (such as IFP, Radio-cubes, etc.) can be characterised as well. But we propose to use pure-3D fits for storing them, mostly because of performance reasons All the necessary infrastructural components exist for building VO-compliant science-ready archives of 3D data. During next few months we expect to have a couple of such resources in the Virtual Observatory.