Section 8-1: The Pythagorean Theorem and its Converse.

Slides:



Advertisements
Similar presentations
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Advertisements

7.2 Converse of Pythagorean Theorem
EQ: How can we use the Pythagoren Theorem and Triangle Inequalities to identify a triangle?
The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
8-1 The Pythagorean Theorem and Its Converse. Parts of a Right Triangle In a right triangle, the side opposite the right angle is called the hypotenuse.
8.1 Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
Benchmark 40 I can find the missing side of a right triangle using the Pythagorean Theorem.
Pythagorean Theorem 5.4. Learn the Pythagorean Theorem. Define Pythagorean triple. Learn the Pythagorean Inequality. Solve problems with the Pythagorean.
8.1 The Pythagorean Theorem and Its Converse. Pythagorean Theorem In a right triangle, the sum of the squares of the lengths of the legs is equal to the.
Objective: To use the Pythagorean Theorem and its converse.
Section 11.6 Pythagorean Theorem. Pythagorean Theorem: In any right triangle, the square of the length of the hypotenuse equals the sum of the squares.
+ Warm Up B. + Homework page 4 in packet + #10 1. Given 2. Theorem Given 4. Corresponding angles are congruent 5. Reflexive 6. AA Similarity 7.
8-1 The Pythagorean Theorem and Its Converse.
4.7 – Square Roots and The Pythagorean Theorem. SQUARES and SQUARE ROOTS: Consider the area of a 3'x3' square: A = 3 x 3 A = (3) 2 = 9.
Objective The student will be able to:
Goal 1: To use the Pythagorean Theorem Goal 2: To use the Converse of the Pythagorean Theorem.
The Pythagorean Theorem and Its Converse
The Pythagorean Theorem and Its Converse OBJECTIVE: To use the Pythagorean Theorem and its converse BIG IDEAS: MEASUREMENT REASONING AND PROOF ESSENTIAL.
Pythagorean Theorem Unit 7 Part 1. The Pythagorean Theorem The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse.
Chapter 8-1 Pythagorean Theorem. Objectives  Students will be able to use the Pythagorean and its converse to find lengths in right triangles.
Geometry Section 9.3 Pythagorean Theorem Converse.
The Pythagorean Theorem
Topic 10 – Lesson 9-1 and 9-2. Objectives Define and identify hypotenuse and leg in a right triangle Determine the length of one leg of a right triangle.
Geometry Section 7.2 Use the Converse of the Pythagorean Theorem.
Objectives: 1) To use the Pythagorean Theorem. 2) To use the converse of the Pythagorean Theorem.
Pythagorean Theorem and Its Converse Chapter 8 Section 1.
Pythagorean Theorem Theorem 8-1: Pythagorean Theorem – In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of.
3/11-3/ The Pythagorean Theorem. Learning Target I can use the Pythagorean Theorem to find missing sides of right triangles.
Section 8-3 The Converse of the Pythagorean Theorem.
Exploring. Pythagorean Theorem For any right triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
A b c. P ROVING THE P YTHAGOREAN T HEOREM THEOREM THEOREM 8-1 Pythagorean Theorem c 2 = a 2 + b 2 b a c In a right triangle, the square of the length.
8.1 Pythagorean Theorem Understand how to use the Pythagorean Theorem and its converse to solve problems Do Now: 1. An entertainment center is 52 in. wide.
Converse of the Pythagorean Theorem
Introduction to Chapter 4: Pythagorean Theorem and Its Converse
Warm Up Simplify the square roots
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem
8-1: The Pythagorean Theorem and its Converse
Pythagorean Theorem and it’s Converse
7-2 The Pythagorean Theorem
The Converse of the Pythagorean Theorem
4.5 The Converse of the Pythagorean Theorem
Geometric Mean Pythagorean Theorem Special Right Triangles
Section 7.2 Pythagorean Theorem and its Converse Objective: Students will be able to use the Pythagorean Theorem and its Converse. Warm up Theorem 7-4.
Bellringer Simplify each expression 5 ∙ ∙ 8.
7.2 The Pythagorean Theorem and its Converse
Pythagorean Theorem and Its Converse
Welcome back from spring break! The rest of the year will FLY by!
Math 3-4: The Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem
8-2 The Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
5.7: THE PYTHAGOREAN THEOREM (REVIEW) AND DISTANCE FORMULA
The Pythagorean Theorem
The Pythagorean Theorem
Pythagorean Theorem a²+ b²=c².
7-1 and 7-2: Apply the Pythagorean Theorem
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem and Its Converse
The Pythagorean Theorem and Its Converse
Objective: To use the Pythagorean Theorem and its converse.
Geometric Mean Pythagorean Theorem Special Right Triangles
Geometric Mean and the Pythagorean Theorem
The Pythagorean Theorem
In a right triangle, the side opposite the right angle is called the hypotenuse. This side is always the longest side of a right triangle. The other.
Converse to the Pythagorean Theorem
7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE
Presentation transcript:

Section 8-1: The Pythagorean Theorem and its Converse

To use the Pythagorean Theorem. To use the converse of the Pythagorean Theorem.

Pythagorean Triple

Greek mathematician from the 6 th century BC. Famous for the Pythagorean Theorem Others knew of the Pythagorean Theorem first: Babylonians Egyptians Chinese

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the hypotenuse.

A Pythagorean triple is a set of nonzero whole numbers a, b, and c that satisfy the equation:

Solve for the variable. Do the sides of the triangle form a Pythagorean triple? x

Solve for the variable. Do the sides of the triangle form a Pythagorean triple? y

Solve for the variable. Do the sides of the triangle form a Pythagorean triple? 4 8 z

If the square of the lengths of one side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

Is the triangle a right triangle?

Is the triangle a right triangle? 6 2 5

If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse.

If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse.

7, 8, and 11 16, 19, and 24 5, 7, and 10