3.4 Linear Programming.

Slides:



Advertisements
Similar presentations
Solve the system of inequalities by graphing. x ≤ – 2 y > 3
Advertisements

Linear Programming. Businesses use linear programming to find out how to maximize profit or minimize costs. Most have constraints on what they can use.
To solve a system means to find the ordered pairs that satisfy both inequalities. Graph and find the intersection of the two inequalities. If they do.
3 – 4 Linear Programming Word Problems
3.4 Linear Programming 10/31/2008. Optimization: finding the solution that is either a minimum or maximum.
Lesson 3-3 Ideas/Vocabulary
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson 5: Problem Solving Problem Solving with Linear Programming Learning.
3-3 Solving Systems of Inequalities by Graphing
Ch 2. 6 – Solving Systems of Linear Inequalities & Ch 2
Example 1 Define the Variables: Let l = length of package g = girth of package Two variables – two inequalities: Graph each inequality. Don’t forget to.
Linear Programming Unit 2, Lesson 4 10/13.
3-5: Linear Programming.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–2) CCSS Then/Now New Vocabulary Key Concept: Feasible Regions Example 1: Bounded Region Example.
Warm-up Follows….. 5-Minute Check 4 A.(0, 3), (0, 6), (2, 12) B.(0, 0), (0, 3), (0, 6), (2, 3) C.(0, 0), (0, 3), (2, 3), (3, 2) D.(0, 0), (0, 3), (2,
Splash Screen. Then/Now You solved systems of linear inequalities by graphing. Find the maximum and minimum values of a function over a region. Solve.
Warm - Up. Learning Targets  I can solve systems of inequalities by graphing.  I can determine the coordinates of the vertices of a region formed by.
Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities.
Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities.
Systems of Linear Equations and Inequalities (Chapter 3)
3.4 Linear Programming p Optimization - Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
P I can solve linear programing problem. Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Opener. Notes: 3.4 Linear Programming Optimization  Many real-life problems involve a process called optimization.  This means finding a maximum or.
3.5 Linear Programming Warm-up (IN) 1. Solve the system: (5, 2)
Linear Programming Problem. Definition A linear programming problem is the problem of optimizing (maximizing or minimizing) a linear function (a function.
11C. Linear Programming. What is a linear programming problem? 1.A set of variables (in Further Maths there will only ever be two variables) called decision.
Class Schedule: Class Announcements Homework Questions 3.4 Notes Begin Homework.
3.4 – Linear Programming. Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values.
3.4: Linear Programming Objectives: Students will be able to… Use linear inequalities to optimize the value of some quantity To solve linear programming.
Class Opener: Solve each equation for Y: 1.3x + y = y = 2x 3.x + 2y = 5 4. x – y = x + 3y = x – 5y = -3.
Warm-up Solve each system of equations:
Get out your Vertices Worksheet!
Constraints Feasible region Bounded/ unbound Vertices
Chapter 4: Systems of Equations and Inequalities Section 4.7: Solving Linear Systems of Inequalities.
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
(0, 0) (36, 0) (30, 4) (0, 10) WARM UP: a. Graph the system of inequalities. b. What are the vertices of the solution? Write your answers as ordered pairs.
3-4: Linear Programming Objectives: Standards addressed:
3.4: Linear Programming  Intro: Oftentimes we want to optimize a situation - this means to:  find a maximum value (such as maximizing profits)  find.
3-5: Linear Programming. Learning Target I can solve linear programing problem.
Linear Programming. What is linear programming? Use a system of constraints (inequalities) to find the vertices of the feasible region (overlapping shaded.
3.4 Linear Programming Objective:
3.3 Linear Programming. Vocabulary Constraints: linear inequalities; boundary lines Objective Function: Equation in standard form used to determine the.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–2) CCSS Then/Now New Vocabulary Key Concept: Feasible Regions Example 1: Bounded Region Example.
Chapter 3 Section 4 Linear Programming Algebra 2 January 29, 2009.
3.4 Linear Programming p Optimization - Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
LINEAR PROGRAMMING A-CED.3 REPRESENT CONSTRAINTS BY EQUATIONS OR INEQUALITIES, AND BY SYSTEMS OF EQUATIONS AND/OR INEQUALITIES, AND INTERPRET SOLUTIONS.
HW: Pg #10-14, 15-21o 10. Min of -34 at (-2, -6); Max of 27 at (1, 5) 11. Min of 10 at (2, 1); No Max – feasible region is unbounded 12. Min of.
Linear Programming Chapter 3 Lesson 4 Vocabulary Constraints- Conditions given to variables, often expressed as linear inequalities. Feasible Region-
Chapter 9: Systems of Equations and Inequalities; Matrices
2.6 Solving Systems of Linear Inequalities
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
Optimization with Linear Programming
2-7 Linear Programming Pre Calc A.
Systems of Equations and Inequalities
Splash Screen.
Solve a system of linear equation in two variables
3.2 Linear Programming 3 Credits AS
3-3 Optimization with Linear Programming
Linear Programming.
3.4 – Linear Programming.
Optimization with Linear Programming
Solve the system of inequalities by graphing. x ≤ 2 y > 3
8.4 Linear Programming p
Graphing Systems of Linear Inequalities
MTH-5101 Practice Test (1) x ≥ 40 (2) y ≥ 0 (3) y ≤ 140
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Section Linear Programming
1.6 Linear Programming Pg. 30.
Linear Programming.
Presentation transcript:

3.4 Linear Programming

Vocabulary Constraints Feasible region Conditions given to variables usu. expressed as linear inequalities Feasible region The intersection of the graphs in a system of inequalities (SOI) Feasible Region

Bounded Unbounded Vertices Describes a closed feasible region formed by a SOI Unbounded Describes an open feasible region formed by a SOI Vertices Points located at the angles of the feasible region Vertices

Steps to Linear Programming Solve the SOI by graphing Name the coords of the feasible region Plug the coords into the function to find the max/min

Find the vertices of the region. Graph the inequalities. Graph the following system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function for this region. Find the vertices of the region. Graph the inequalities. The polygon formed is a triangle with vertices at (–2, 4), (5, –3), and (5,4). Example 4-1a

(x, y) 3x – 2y f(x, y) (–2, 4) 3(– 2) – 2(4) (5, –3) 3(5) – 2(–3) 21 Page 2 example 1: Use a table to find the maximum and minimum values of f (x, y). Substitute the coordinates of the vertices into the function. (x, y) 3x – 2y f(x, y) (–2, 4) 3(– 2) – 2(4) – 14 (5, –3) 3(5) – 2(–3) 21 (5, 4) 3(5) – 2(4) 7 Answer: The vertices of the feasible region are (–2, 4), (5, –3), and (5, 4). The maximum value is 21 at (5, –3). The minimum value is –14 at (–2, 4). Example 4-1a

Example 2: Graph the following system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function for this region. Answer: vertices: (1, 5), (4, 5) (4, 2); maximum: f(4, 2) = 10, minimum: f(1, 5) = –11 Example 4-1b

Example 3: Graph the following system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function for this region. Graph the system of inequalities. There are only two points of intersection, (–2, 0) and (0, –2). Example 4-2a

(x, y) 2x + 3y f(x, y) (–2, 0) 2(–2) + 3(0) –4 (0, –2) 2(0) + 3(–2) –6 Example 3 page 2 (x, y) 2x + 3y f(x, y) (–2, 0) 2(–2) + 3(0) –4 (0, –2) 2(0) + 3(–2) –6 The minimum value is –6 at (0, –2). Although f(–2, 0) is –4, it is not the maximum value since there are other points that produce greater values. For example, f(2,1) is 7 and f(3, 1) is 10. It appears that because the region is unbounded, f (x, y) has no maximum value. Answer: The vertices are at (–2, 0) and (0, –2). There is no maximum value. The minimum value is –6 at (0, –2). Example 4-2a

Example 4: Graph the following system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the function for this region. Answer: vertices: (0, –3), (6, 0); maximum: f(6, 0) = 6; no minimum Example 4-2b