The Unit Circle Part I MSpencer
The Unit Circle r = 1 It is called a unit circle because the radius is one unit.
All the Way Around Another way of measuring angles is with radians. Since a revolution is the circumference of a circle and r = 1, C = 2 r = 2 (1) = 2 r = 1 One way to measure angles is with degrees. One revolution around the unit circle constitutes 360°. 2 radians is equivalent to 360°
One Revolution r = 1 0°, 0 360°, 2
Multiples of 90°, 0°, 0 360°, 2 180°, 90°, 270°,
The Quadrants 0°, 0 360°, 2 180°, 90°, 270°, Q I 0° < < 90° 0 < < QII 90° < < 180° < < QIII 180° < < 270° < < QIV 270° < < 360° < < 2
Multiples of 45°, 135°, 315°, 45°,225°,
Multiples of 60°, 120°, 300°, 60°,240°,
Multiples of 30°, 150°, 330°, 30°,210°,
The Whole Unit Circle Together (Grouped) 150°, 330°, 30°,210°, 0°, 0 360°, 2 180°, 90°, 270°, 135°, 315°, 45°,225°,120°, 300°, 60°,240°,
The Whole Unit Circle Together (In Ascending Order) 150°, 330°, 30°,210°, 0°, 0 360°, 2 180°, 90°, 270°, 135°, 315°, 45°,225°,120°, 300°, 60°,240°,