THE UNIT CIRCLE Initially Developed by LZHS Advanced Math Team (Keith Bullion, Katie Nerroth, Bryan Stortz) Edited and Modified by Jeff Bivin Lake Zurich.

Slides:



Advertisements
Similar presentations
Trig (Polar) Form of a Complex Number
Advertisements

Jeff Bivin -- LZHS Polynomials and roots Jeffrey Bivin Lake Zurich High School Last Updated: October 26, 2009.
By: Jeffrey Bivin Lake Zurich High School Last Updated: October 11, 2005.
Solving Quadratics by Completing the Square & Quadratic Formula
Two lines and a Transversal Jeff Bivin & Katie Nerroth Lake Zurich High School Last Updated: November 18, 2005.
Determinants of 2 x 2 and 3 x 3 Matrices By: Jeffrey Bivin Lake Zurich High School
Jeff Bivin -- LZHS Vector Applications By: Jeffrey Bivin Lake Zurich High School Last Updated: February 14, 2011.
Precalculus – 2015 circle.
Using Fundamental Trig Identities
Graphing Parabolas Using the Vertex Axis of Symmetry & y-Intercept By: Jeffrey Bivin Lake Zurich High School Last Updated: October.
Jeff Bivin -- LZHS Graphing Rational Functions Jeffrey Bivin Lake Zurich High School Last Updated: February 18, 2008.
By: Jeffrey Bivin Lake Zurich High School Last Updated: October 30, 2006.
Jeff Bivin -- LZHS Arithmetic Sequences Last UpdatedApril 4, 2012.
Arithmetic Sequences & Series Last Updated: October 11, 2005.
Recursive Functions, Iterates, and Finite Differences By: Jeffrey Bivin Lake Zurich High School Last Updated: May 21, 2008.
Counting and Probability
Exponential and Logarithmic Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: January 30, 2008.
MATRICES Jeffrey Bivin Lake Zurich High School Last Updated: October 12, 2005.
Logarithmic Properties & Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: January 30, 2008.
Graphs of Polynomial Functions
Using Spreadsheets for Linear Programming with The Simplex Method A sample problem By: Jeffrey Bivin Lake Zurich High School Last Updated: October 11,
Exponential and Logarithmic Functions Section 5.4.
Relations and Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: November 14, 2007.
Graphing Lines slope & y-intercept & x- & y- intercepts Jeffrey Bivin Lake Zurich High School Last Updated: September 6, 2007.
_______º _______ rad _______º ________ rad ­­­­ _______º _______ rad _______º _______ rad ­­­­ _______º _______ rad ______º _______ rad Unit Circle use.
Systems of Equations Gaussian Elimination & Row Reduced Echelon Form by Jeffrey Bivin Lake Zurich High School Last Updated: October.
Right Triangle Trigonometry
Jeff Bivin -- LZHS Last Updated: April 7, 2011 By: Jeffrey Bivin Lake Zurich High School
Jeff Bivin -- LZHS Last Updated: March 11, 2008 Section 10.2.
Graphing Parabolas Using the Vertex Axis of Symmetry & y-Intercept By: Jeffrey Bivin Lake Zurich High School
Jeff Bivin -- LZHS Quadratic Equations. Jeff Bivin -- LZHS Convert to Standard Form f(x) = 5x x + 46 f(x) = 5(x 2 - 8x + (-4) 2 ) f(x)
Binomial Expansion And More
Jeff Bivin -- LZHS Permutation, Combinations, Probability, Oh My… Jeff Bivin Lake Zurich High School ICTM Conference October 21, 2011.
By: Jeffrey Bivin Lake Zurich High School
Exponential and Logarithmic Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: January 2, 2006.
Matrix Working with Scalars by Jeffrey Bivin Lake Zurich High School Last Updated: October 11, 2005.
Rational Expon ents and Radicals By: Jeffrey Bivin Lake Zurich High School Last Updated: December 11, 2007.
THE UNIT CIRCLE Day , (1, 0) (-1, 0) (0, 1) (0, -1)
Matrix Multiplication. Row 1 x Column X 25 = Jeff Bivin -- LZHS.
Inverses By: Jeffrey Bivin Lake Zurich High School Last Updated: November 17, 2005.
Lake Zurich High School
Matrix Multiplication Example 1 Original author: Jeffrey Bivin, Lake Zurich High School.
Lake Zurich High School
Jeffrey Bivin Lake Zurich High School
Matrix Multiplication
Solving Quadratics by Completing the Square & Quadratic Formula
Relations and Functions
Rational Exponents and Radicals
Lake Zurich High School
Lake Zurich High School
Lake Zurich High School
Jeffrey Bivin Lake Zurich High School
Gummy Bear Project Notes
Two lines and a Transversal
Lake Zurich High School
Recursive Functions and Finite Differences
Lake Zurich High School
By: Jeffrey Bivin Lake Zurich High School
Matrix Multiplication
By: Jeffrey Bivin Lake Zurich High School
Lake Zurich High School
Graphing Linear Inequalities
Lake Zurich High School
Exponents and Radicals
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
Circle Last Updated: October 11, 2005.
Lake Zurich High School
Jeffrey Bivin Lake Zurich High School
Find the Distribution Chapter 2.3.
Presentation transcript:

THE UNIT CIRCLE Initially Developed by LZHS Advanced Math Team (Keith Bullion, Katie Nerroth, Bryan Stortz) Edited and Modified by Jeff Bivin Lake Zurich High School Jeff Bivin -- LZHS

2s s 30 o 90 o 60 o if 2s = 1 s = ½ Jeff Bivin -- LZHS

30 o 90 o 60 o (1, 0) (-1, 0) (0, 1) (0, -1) Jeff Bivin -- LZHS

30 o 90 o 60 o (1, 0) (-1, 0) (0, 1) (0, -1) 150 o Jeff Bivin -- LZHS

30 o 90 o 60 o (1, 0) (-1, 0) (0, 1) (0, -1) 210 o Jeff Bivin -- LZHS

30 o 90 o 60 o (1, 0) (-1, 0) (0, 1) (0, -1) 330 o Jeff Bivin -- LZHS

60 o 90 o 30 o s 2s if 2s = 1 s = ½ Jeff Bivin -- LZHS

60 o 90 o (1, 0) (-1, 0) (0, 1) (0, -1) 30 o Jeff Bivin -- LZHS

90 o (1, 0) (-1, 0) (0, 1) (0, -1) 30 o 60 o 120 o Jeff Bivin -- LZHS

90 o (1, 0) (-1, 0) (0, 1) (0, -1) 30 o 240 o 60 o Jeff Bivin -- LZHS

90 o (1, 0) (-1, 0) (0, 1) (0, -1) 30 o 300 o 60 o Jeff Bivin -- LZHS

45 o 90 o s s if Jeff Bivin -- LZHS

45 o 90 o (1, 0) (-1, 0) (0, 1) (0, -1) Jeff Bivin -- LZHS

45 o 90 o (1, 0) (-1, 0) (0, 1) (0, -1) 135 o Jeff Bivin -- LZHS

45 o 90 o (1, 0) (-1, 0) (0, 1) (0, -1) 225 o Jeff Bivin -- LZHS

45 o 90 o (1, 0) (-1, 0) (0, 1) (0, -1) 315 o Jeff Bivin -- LZHS

2x x 30 o 90 o 60 o 90 o 30 o x 2x 45 o 90 o x x (1, 0) (-1, 0) (0, 1) (0, -1) Putting it Together Jeff Bivin -- LZHS

, (1, 0) (-1, 0) (0, 1) (0, -1) Jeff Bivin -- LZHS

, (1, 0) (-1, 0) (0, 1) (0, -1) Walking around by 30 o Jeff Bivin -- LZHS

, (1, 0) (-1, 0) (0, 1) (0, -1) Walking around by 45 o Jeff Bivin -- LZHS

, (1, 0) (-1, 0) Walking around by 60 o Jeff Bivin -- LZHS

, (1, 0) (-1, 0) (0, 1) (0, -1) Jeff Bivin -- LZHS

0 Divide each semi-circle into 4 parts. Jeff Bivin -- LZHS

0 Can we reduce any of those fractions? Divide each semi-circle into 6 parts. Jeff Bivin -- LZHS

0 Putting the radian measures together! Jeff Bivin -- LZHS

0 Compare to the degree measure  π = 180 o Jeff Bivin -- LZHS

0 (1, 0) (-1, 0) (0, 1) (0, -1) Look at the points! Jeff Bivin -- LZHS

, (1, 0) (0, 1) (-1, 0) (0, -1) Putting it all together! Jeff Bivin -- LZHS