WATERPOWER LABORATORY Design of a small horizontal axis wind turbine, HAWT
WATERPOWER LABORATORY Design parameters Power Output, P:300 W Wind velocity, c:8 m/s Tip Speed Ratio, TSR:5 Assumed efficiency, :30 % Number of blades, z:2 Wing profile:NACA Angle of attack, 8 o Lift coefficient, C L :0,8 Drag coefficient, C D :0,01
WATERPOWER LABORATORY Radius of the turbine D Where: A=Area[m 2 ] c=Wind velocity[m/s] =Efficiency[ - ] P=Power[W] =Density[kg/m 3 ] R=Radius[m]
WATERPOWER LABORATORY Speed of the turbine Where: c=Wind velocity[m/s] n=Speed[rpm] =Angular velocity[rad/s] R=Radius[m]
WATERPOWER LABORATORY Power through a section of the turbine blade r rr AA
WATERPOWER LABORATORY Torque force, F T from a section of the turbine blade r rr AA FTFT
WATERPOWER LABORATORY Wing profile Chord Length, L chord
WATERPOWER LABORATORY L Chord 4 FLFL FDFD v Where: A=Area[m 2 ] a=Angle of attack[degrees] C D =Drag Coefficient[ - ] C L =Lift Coefficient[ - ] F D =Drag Force[N] F L =Lift Force[N] L Chord =Chord Length[m] =Density[kg/m 3 ] V=Relative velocity[m/s]
WATERPOWER LABORATORY Peripheral velocity u u c Wind velocity = c Relative velocity = V V
WATERPOWER LABORATORY c u = ·r v FLFL FDFD
WATERPOWER LABORATORY c u = ·r v FLFL FDFD v c u
WATERPOWER LABORATORY c u = ·r v FLFL FDFD v c u F L(Torque) F D(Torque)
WATERPOWER LABORATORY c u = ·r v FLFL FDFD FTFT
WATERPOWER LABORATORY v FTFT
Chord Length, L chord L chord v c u
WATERPOWER LABORATORY Output data