Geologic Structures Physical Geology, Chapter 15

Slides:



Advertisements
Similar presentations
Landforming Processes:
Advertisements

Structural Geology Crustal Deformation
Crustal Deformation Earth, 10e - Chapter 10
Chapter 9 – FOLDS, FAULTS & GEOLOGIC MAPS
Inuksuk - Nunavut, Canada
GEOLOGIC STRUCTURES “Architecture of bedrock” Structural Geology- –shapes, –arrangement, –interrelationships of bedrock –units & forces that cause them.
Geologic Structures Structural Geology – study of deformation of rocks and the forces that cause deformation.
Geologic Structures Prepared by Betsy Conklin for Dr. Isiorho.
Deformation and Geologic Structures
Structural Geology: Deformation and Mountain Building
DATING ROCK LAYERS RELATIVE DATING
Chapter 20 Geologic structures.
Lecture-11 1 Lecture #11- Faults and Faulting. Lecture-11 2 Faults Bound the Major Plates.
© 2011 Pearson Education, Inc. Earth: An Introduction to Physical Geology, 10e Tarbuck & Lutgens.
OF ROCKS [L17 P /IP-B] DEFORMATION OF ROCKS [L17 P /IP-B]
Today’s list____________ Ch15: Rock Deformation
Mountain Building By Bhavani Sridhar Internship I Lesson.
Dynamic Earth Class February 2005.
Rock Deformation and Geologic Structures
Copyright © 2014 All rights reserved, Government of Newfoundland and Labrador Earth Systems 3209 Unit: 4 The Forces Within Earth Reference: Chapters 4,
Types of Metamorphism Regional metamorphism
Rock Deformation.
Mountains and Mountain Building: Chapter 11. Rock Deformation Deformation is a general term that refers to a change in size or shape of rocks in the earth's.
Rock Deformation Chapter 11, Section 1.
Faults and Folds Reference: Tarbuck and Lutgens Pages
Folds, Faults, and Geologic Maps
Section 1: How Rock Deforms
Crustal Deformation. Types of Deformation Folds Faults & Joints.
Folds Rocks are often bent into a series of wave-like undulations called folds Characteristics of folds Folds result from compressional stresses which.
DEFORMATION OF THE EARTHS CRUST Types of Deformation 1.folds 2.faults.
 Stress: Force per unit area  Strain: Change in length/area/volume to original length/area/volume  Rocks are subjected to great forces- particularly.
Crustal Deformation Structural Geology
Faults, Folds, and Landscapes
Lecture Outlines Physical Geology, 14/e Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Plummer, Carlson &
Structural geology Geology 101, Fall Structural geology The study of the deformation and fabric of rocks in order to understand the tectonic forces.
Structural Geology.
FOLD, FAULT, AND JOINT GROUP 5 FOLD FOLDS ARE WAVE-LIKE IN SHAPE AND VARY ENORMOUSLY IN SIZE. THE TERM FOLD IS USED IN GEOLOGY WHEN ONE OR A STACK OF.
Folds, Faults and Other Records of Deformation. Significance to CCS Fundamental to trapping configuration Fundamental to trapping configuration Important.
Crustal Deformation Review of Chapter 11. Isostasy Balance in possible vertical movement of the plates –Gravity bears down –Heated aesthenosphere is buoyant.
MOUNTAIN BUILDING.
Folds and Faults hScienceWork/FoldFault/FoldFaul tGeologyNotes.htm.
Geologic Structure.
11 CHAPTER 11 Mountain Building. Factors Affecting Deformation 11.1 ROCK DEFORMATION  Factors that influence the strength of a rock and how it will deform.
structural geology & mountain building
Structure An Introduction to Deformation. Standards Describe the composition and structure of Earth’s materials.
Lecture Outlines Physical Geology, 12/e
Forces In Mountain Building
Mountain Building Folding and Faulting. Stress in the Crust Stress from plate motions causes crustal rocks to deform –Rocks near the surface are cool.
Metamorphic Processes I
Chapter 7 Dynamic Earth Eric H Christiansen
Folds, Faults & Geologic Maps
Teaching Aids Service by KRRC Information Section.
FOLDS, FAULTS AND GEOLOGIC MAPS
Lecture Outlines Physical Geology, 12/e
Eric H Christiansen.
Forces In Mountain Building
Crustal Deformation Chapter 10.
Faults
Modifcation of Rocks by Folding and Fracturing
Crustal Deformation.
Earth’s Materials and Processes-Part 10 Mountain Building and Faults
Chapter 11.1 Rock Deformation.
Structural Geology Structural geology is the study of rocks deformed by stress and strain This involves trying to understand stress and strain forces to.
Tectonic Forces and Geologic Structures
Mountain Building Earth Science Ch. 11.
Stress, Folding and Faulting
Deformations Folds Faults and Fractures Continental Collisions Crustal Fragments and Mountain Building CHARLITO S. BOMEDIANO Department of Education.
Deformation of the Earth’s Crust
The Results of Stress.
MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS
Presentation transcript:

Geologic Structures Physical Geology, Chapter 15 Tim Horner CSUS Geology Department

Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change shape and orientation in response to applied stress Structural geology is the study of the shapes, arrangement, and interrelationships of rock units and the forces that cause them

Stress and Strain Stress is force per unit area The three basic types of stress are compressive, tensional and shear Strain is a change in size or shape in response to stress Geologic structures are indicative of the type of stress and its rate of application, as well the physical properties of the rocks or sediments

How Rocks Respond to Stress Rocks behave as elastic, ductile or brittle materials depending on: amount and rate of stress application type of rock temperature and pressure If deformed materials return to original shape after stress removal, they are behaving elastically However, once the stress exceeds the elastic limit of a rock, it deforms permanently ductile deformation involves bending plastically brittle deformation involves fracturing

Types of Geologic Structures Folds are wavelike bends in layered rock Represent rock strained in a ductile manner, usually under compression The axial plane divides a fold into its two limbs The surface trace of an axial plane is called the hinge line (or axis) of the fold Anticlines are upward-arching folds, and synclines are downward-arching folds

Types of Folds Plunging folds are folds in which the hinge line is not horizontal Where surfaces have been leveled by erosion, plunging folds form V- or horseshoe-shaped patterns of exposed rock layers (beds) Open folds have limbs that dip gently, whereas isoclinal folds have parallel limbs Overturned folds have limbs that dip in the same directions, and recumbent folds are overturned to the point of being horizontal

Structural Domes and Basins Domes are structures in which the beds dip away from a central point Sometimes called doubly plunging anticlines Basins are structures in which the beds dip toward a central point Sometimes called doubly plunging synclines

Fractures in Rock Joints - fractures bedrock along which no movement has occurred Multiple parallel joints are called joint sets Faults - fractures in bedrock along which movement has occurred Considered “active” if movement has occurred along them within the last 11,000 years Categorized by type of movement as dip-slip, strike-slip, or oblique-slip

Types of Faults Dip-slip faults have movement parallel to the dip of the fault plane In normal faults, the hanging-wall block has moved down relative to the footwall block In reverse faults, the hanging-wall block has moved up relative to the footwall block Insert revised Fig. 15.22 here Insert revised Fig. 15.26a here

Types of Faults Dip-slip faults have movement parallel to the dip of the fault plane Fault blocks, bounded by normal faults, that drop down or are uplifted are known as grabens and horsts, respectively Grabens associated with divergent plate boundaries are called rifts Thrust faults are reverse faults with dip angles less than 30° from horizontal

Types of Faults Strike-slip faults have movement that is predominantly horizontal and parallel to the strike of the fault plane A viewer looking across to the other side of a right-lateral strike-slip fault would observe it to be offset to their right A viewer looking across to the other side of a left-lateral strike-slip fault would observe it to be offset to their left Oblique-slip faults have movement with both vertical and horizontal components Right-lateral San Andreas Fault

California Faults