Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Slides:



Advertisements
Similar presentations
ISAC Physics Working Group Convenors Malcolm Butler and Barry Davids.
Advertisements

Towards a neutron target and Measuring (n, ɣ) cross sections of the r-process Lothar Buchmann TRIUMF.
SYNTHESIS OF SUPER HEAVY ELEMENTS
EURISOL_DS – Task 11 Subtask 5 Neutron- and proton-induced reactions up to Fermi energy J. Äystö / V. Rubchenya JYFL, Jyväskylä (P9) / KhRI, St.Petersburg.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Mass measurements on neutron-rich nuclei with the CPT mass CARIBU Kumar S. Sharma Department of Physics and Astronomy Winnipeg MB.
Charged-particle acceleration in PW laser-plasma interaction
ROGER CABALLERO FOLCH, Barcelona, 9 th November 2011.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
Accelerator technique FYSN 430 Fall Syllabus Task: determine all possible parameters for a new accelerator project Known: Scope of physics done.
Assembly of Targets for RPA by Compression Waves A.P.L.Robinson Plasma Physics Group, Central Laser Facility, STFC Rutherford-Appleton Lab.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Laser driven particle acceleration
Carbon Injector for FFAG
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
Nuclear Astrophysics Working Group Discussion. Schedule 6:00 – 6:15Philippe Collon (p-process: AMS) 6:15 – 6:30 Alan Chen (Classical novae/X-ray bursts)
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
ELI-NP: the way ahead, March Anna Ferrari An overview of the shielding problems around high energy laser-accelerated beams Anna Ferrari Institute.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Decay Spectroscopy Working Group Nuclear Structure Theory Morten Hjorth-Jensen – Shell Structure and Interactions Ivan Borzov – Theory of  Decay Applications.
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
Welcome to the CHARMS See – Tea Sunday, October 11, 2015 Release of Light Alkalis (Li, Na, K) From ISOLDE Targets Strahinja Lukić,
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Multi-GeV laser driven proton acceleration in the high current regime Laser-driven acceleration is living a major revolution (PW era)… …but will ever be.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Incomplete fusion studies near Coulomb barrier Pragya Das Indian Institute of Technology Bombay Powai, Mumbai , India.
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
28. November 2005 Fission product yield measurements with JYFLTRAP A novel application of a Penning trap H. Penttilä, J. Äystö, V.-V. Elomaa, T. Eronen,
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Experimental part: Measurement the energy deposition profile for U ions with energies E=100 MeV/u - 1 GeV/u in iron and copper. Measurement the residual.
Radiation damage calculation in PHITS
Reiner Krücken Welcome to Kloster Banz. Reiner Krücken The Munich Accelerator for Fission Fragments at the FRM II in Garching Facility Overview Status.
European Isotope Separation On-Line Radioactive Nuclear Beam Facility A preliminary design study of the next- generation European ISOL RNB facility GANIL,
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
P.G. Thirolf, D. Habs et al., LMU München
1. Fast ignition by hydrodynamic flow
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
Applications of Nuclear Physics
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
Observation of new neutron-deficient multinucleon transfer reactions
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Assessment of Physics, Applications and Construction Issues for the Proposed Magurele Short-Pulse Facility Silviu Olariu National Institute of Physics.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
Extreme Light Infrastructure - Nuclear Physics ELI – NP European Research Center Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Dietrich Habs NUSTAR, Bucharest, Oct 21, 2011, 10:40 h 1 D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik Extreme Light Infrastructure.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
New concept of light ion acceleration from low-density target
SUPA, Department of Physics, University of Strathclyde,
the s process: messages from stellar He burning
Laser-based Acceleration for Nuclear Physics experiments at ELI-NP
Research Co-ordination Meeting of the IAEA CRP on “Elements of power
Presentation transcript:

Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics Outline:  motivation: nucleosynthesis of heavy elements  r process path: waiting point N=126  ultra-dense laser-accelerated ion beams  novel reaction mechanism: fission-fusion  experimental requirements at ELI-NP Peter G. Thirolf, LMU Munich ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München r process: waiting point N=126 - waiting point N=126: bottleneck for nucleosynthesis of actinides - last region of r process ‘ close ’ to stability  r process: - path for heavy nuclei far in ‚terra incognita‘ - astrophysical site(s) still unknown: core collapse SN II, neutron star merger ? Au, Pt, Ir,Os ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München - cold compression of electron sheet, followed by electron breakout - dipole field between electrons and ions - ions + electrons accelerated as neutral bunch (avoid Coulomb explosion) - solid-state density: e/cm 3 ‘classical’ bunches: 10 8 e/cm 3 Radiation Pressure Acceleration driver laser ionselectrons nm foil relativ. electrons at solid density  ~ x density of conventionally accelerated ion beams ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Exp. Scheme for “Fission-Fusion” ELI-NP Workshop, Bucharest, March 10-12, 2011 ~ 1 mm Fission fragments Fusion products Reaction targetProduction target CD 2 : 520 nm CH 2 ~ 70  m 232 Th: ~ 50  m 232 Th: 560 nm APOLLON laser : W/cm 2 32 fs, 273 J, 8.5 PW W/cm 2 32 fs, 23 J, 0.7 PW focus: ~ 3  m 232 Th + p, C → F L + F H : beam-like fission fragments beam (~ 7 MeV/u): d, C, 232 Th target: p, C, 232 Th d, C Th → F L + F H : target-like fission fragments D. Habs, PT et al., Appl. Phys. B, in print

Peter G. Thirolf, LMU München Fission Stage of Reaction Scheme 232 Th: ~ 91,  A L ~ 14 amu (FWHM)  AL ~ 22 amu (10%) ~ 37.5 (Rb,Sr) FLFL FHFH  fission mass distribution: ELI-NP Workshop, Bucharest, March 10-12, 2011  fusion-evaporation calculations (PACE4): (Z=35,A=102) + (Z=35, A=102): E lab = 270 MeV (E* = 65 MeV) 190 Yb (Z=70,N=126): 2.1 mb 189 Yb ( N=125): 15.8 mb 188 Yb ( N=124): 61.7 mb 187 Yb ( N=123): 55.6 mb

Peter G. Thirolf, LMU München Collective Stopping Power Reduction binary collisions k D = Debye wave number long-range collective interaction  p = plasma frequency  Bethe-Bloch for individual ion:  reduction of atomic stopping power for ultra-dense ion bunches: - plasma wavelength (~ 5 nm) « bunch length (~560 nm):  only binary collisions contribute - „snowplough effect“: first layers of ion bunch remove electrons of target foil - predominant part of bunch: screened from electrons (n e reduced)  reduction of dE/dx : avoids ion deceleration below V C :  allows for thick reaction targets for fusion reactions ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Exp. Scheme for “Fission-Fusion” collective stopping: ~ 1 mm Fission fragments Fusion products 232 Th: ~ 5 mm CD 2 : 520 nm 232 Th: 560 nm ELI-NP Workshop, Bucharest, March 10-12, 2011 Reaction targetProduction target APOLLON laser : W/cm 2 32 fs, 273 J,8.5 PW W/cm 2 32 fs, 23 J, 0.7 PW focus: ~ 3  m conventional stopping: ~ 1 mm Fission fragments Fusion products Reaction targetProduction target CD 2 : 520 nm CH 2 ~ 70  m 232 Th: ~ 50  m 232 Th: 560 nm APOLLON laser : W/cm 2 32 fs, 273 J, 8.5 PW W/cm 2 32 fs, 23 J, 0.7 PW focus: ~ 3  m

Peter G. Thirolf, LMU München Fission-Fusion Yield / Laser Pulse laser acceleration (300 J,  ~10%): normal stopping reduced stopping 232 Th C protons beam-like light fragments target-like light fragments fusion probability F L (beam) + F L (target) neutron-rich fusion products (A≈ )  laser development in progress: diode-pumped high-power lasers: increase of repetition rate expected ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Towards N=126 Waiting Point  r process path: - known isotopes ~15 neutrons away from r process path (Z≈ 70) x  visions: - test predictions: r process branch to long-lived (~ 10 9 a) superheavies (Z≥110)  search in nature ? - improve formation predictions for U, Th - recycling of fission fragments in (many) r process loops ? - lifetime measurements: already with ~ 10 pps  measure: - masses, lifetimes, structure -  -delayed n emission prob. P,n  fisfus key nuclei ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Experimental layout high power short-pulse laser APOLLON (gas-filled) separator mirror target concrete shielding  characterization of reaction products - decay spectroscopy (tape) transport system detector ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Experimental layout high power short-pulse laser APOLLON (gas-filled) separator mirror target concrete shielding gas stopping cell cooler/buncher Penning trap mass measurements (  m/m= )  characterization of reaction products - decay spectroscopy  precision mass measurements: e.g. Penning trap ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München “The Way Ahead” ELI-NP Workshop, Bucharest, March 10-12, 2011  exploratory experiments :  requirements: - RPA target chamber Th target development - ion diagnostics: Thomson parabola - staged approach with tests of crucial ingredients at existing facilities prior to operation of ELI-NP  laser ion acceleration of Th ions  collective effects of dense ion bunches (range enhancement)

Peter G. Thirolf, LMU München Conclusions  novel laser ion acceleration (RPA): - generation of ultra-dense ion bunches - enables fission-fusion reaction mechanism  fusion between 2 neutron-rich fission fragments - reduction of electronic stopping ? - may lead much closer towards N=126 r-process waiting point  ELI-NP: unique infrastructure - superior to ‘conventional’ radioactive beam facilities  The Way Ahead: - exploratory experiments at existing laser beams (Thorium acceleration, collective range enhancement..) - collaboration has to be formed ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Thanks to the Collaboration: D. Habs (LMU, MPQ) T. Tajima (LMU, JAEA/Kyoto) J. Schreiber (LMU) M. Gross (LMU) A.Henig (LMU) D. Jung (LMU) D. Kiefer (LMU) G. Korn (MPQ) F. Krausz (MPQ, LMU) J. Meyer-ter-Vehn (MPQ) H.-C. Wu (MPQ) X.Q. Yan (MPQ, Univ. Beijing) B. Hegelich (LANL, LMU) V. Liechtenstein (Kurchatov Inst., Moscow) Thank you for your attention ! ELI-NP Workshop, Bucharest, March 10-12, 2011

Peter G. Thirolf, LMU München Requirements for ELI-NP: Floorspace layout ELI-NP Workshop, Bucharest, March 10-12, 2011 production- separation area measurement area concrete shielding 18 m 12 m 15 m recoil separator: - wide momentum acceptance - gas-filled ?

Peter G. Thirolf, LMU München Experimental ELI-NP 110 m 120 m ELI-NP Workshop, Bucharest, March 10-12, 2011 E1: laser-induced nuclear reactions  “fission-fusion” experimental areas Laser clean rooms

Peter G. Thirolf, LMU München Cost Estimate ELI-NP Workshop, Bucharest, March 10-12, 2011  component cost estimate: - laser target chamber: ~ 200 kEUR - recoil separator : ~ 5000 kEUR - tape station : ~ 150 kEUR - decay detectors : ~ 150 kEUR - buffer gas cell : ~ 300 kEUR - mass analyzer : ~ 300 kEUR - electronics, control, data acquisition : ~ 200 kEUR total: ~ 6.3 MEUR