Page 1 ESA CliC workshop, Tromsø, 20 January 2015 Ingo Sasgen& REGINA consortium www.regina-science.eu (Mark Drinkwater, ESA); V. Klemann, L. Petrie, P.

Slides:



Advertisements
Similar presentations
SPP 1257 Modelling of the Dynamic Earth from an Integrative Analysis of Potential Fields, Seismic Tomography and other Geophysical Data M. Kaban, A. Baranov.
Advertisements

An estimate of post-seismic gravity change caused by the 1960 Chile earthquake and comparison with GRACE gravity fields Y. Tanaka 1, 2, V. Klemann 2, K.
Century-scale continent-to-ocean ice mass transport and measurement of lithospheric thickness and mantle viscosity using GPS Erik R. Ivins (JPL/Caltech)
Dynamic topography, phase boundary topography and latent-heat release Bernhard Steinberger Center for Geodynamics, NGU, Trondheim, Norway.
Glacial Isostatic Adjustment Contributions to Tide Gauge, Altimetry and GRACE Observations Glenn Milne Dept of Earth Sciences University of Durham, UK.
A Preliminary Calibrated Deglaciation Chronology for the Eurasian Ice Complex Lev Tarasov¹, W.R. Peltier², R. Gyllencreutz³, O. Lohne³, J. Mangerud³, and.
Ice Sheets GNSS (GPS, GLONASS, Galileo, Beidou, QZSS) Matt King.
IV: Ice velocity – costal regions + select areas (phase 1), all ice sheet (ph. 2) SEC: Surface elevation changes, ERS/Envisat/CryoSat, GLL: Grounding.
Some Hydrological and Cryospheric Applications of GRACE John Wahr (U of Colorado), Sean Swenson (NCAR), Isabella Velicogna (U of California at Irvine)
OIB Long Range Planning Luthcke and Jezek. OIB Long Term Observation Goals OIB is meant to provide data to improve our understanding of the mass evolution.
Glacial Rebound Glacial Rebound Studies depend on many factors. What are they ? Ice load History of the load Ocean water load on coastlines and globally.
The Four Candidate Earth Explorer Core Missions consultative Workshop October 1999, Granada, Spain, Revised by CCT GOCE S 23 The gravity.
Time-depending validation of ocean mass anomalies from GRACE by means of satellite altimetry and numerical models Henryk Dobslaw and Maik Thomas GeoForschungsZentrum.
Cryospheric and Hydrologic Contributions to Global Sea Level Change M. Tamisiea Proudman Oceanographic Laboratory R. Steven Nerem University of Colorado.
Recent results from GRACE in Greenland and Antarctica Isabella Velicogna* and John Wahr** * ESS, University of California Irvine, Irvine CA ** Dept Of.
Don P. Chambers Center for Space Research The University of Texas at Austin Understanding Sea-Level Rise and Variability 6-9 June, 2006 Paris, France The.
GEO 5/6690 Geodynamics 24 Oct 2014 © A.R. Lowry 2014 Read for Wed 5 Nov: T&S Last Time: Flexural Isostasy Generally, loading will occur both by.
I. Sasgen et al. MAGMA Seminar, May 25, 2005, Prague Geodetic signatures of glacial changes in Antarctica Ingo Sasgen Supervision: Detlef Wolf, Zdeněk.
Sea Ice Deformation Studies and Model Development
Using GRACE to estimate changes in land water storage: present limitations and future potential John Wahr, Sean Swenson, Isabella Velicogna University.
Last Time: Introduction to Gravity Governed by LaPlace’s equation: with solution of the form: If we have a spherical body with mass M and constant (or.
The Hunting of the SNARF Giovanni F. Sella Seth Stein Northwestern University Timothy H. Dixon University of Miami "What's the good of Mercator's North.
A spherical Fourier approach to estimate the Moho from GOCE data Mirko Reguzzoni 1, Daniele Sampietro 2 2 POLITECNICO DI MILANO, POLO REGIONALE DI COMO.
1 Approximate decorrelation and non-isotropic smoothing of time-variable GRACE gravity field models Jürgen Kusche, Roland Schmidt with input from Susanna.
Hydrological mass changes inferred from high-low satellite- to-satellite tracking data Tonie van Dam, Matthias Weigelt Mohammad J. Tourian Nico Sneeuw.
GLACIAL ISOSTATIC ADJUSTMENT AND COASTLINE MODELLING Glenn Milne
Thermosteric Effects on Long-Term Global Sea Level Change Jianli Chen Center for Space Research, University of Texas at Austin, USA
Deformation Analysis in the North American Plate’s Interior Calais E, Purdue University, West Lafayette, IN, Han JY,
Sea-Level Change Driven by Recent Cryospheric and Hydrological Mass Flux Mark Tamisiea Harvard-Smithsonian Center for Astrophysics James Davis Emma Hill.
Thoughts on the GIA Issue in SNARF Jim Davis & Tom Herring Input from and discussions with Mark Tamisiea, Jerry Mitrovica, and Glenn Milne.
The Sea Level Rise Story Bruno Tremblay McGill University Slide from Steven Nerem – University of Colorado.
©2010 Elsevier, Inc. 1 Chapter 14 Cuffey & Paterson.
Bernhard Steinberger Mantle evolution and dynamic topography of the African Plate Deutsches GeoForschungsZentrum, Potsdam and Physics of Geological Processes,
Patagonia Ice Field Melting Observed by GRACE Joint International GSTM and DFG SPP Symposium, October 15-17, 2007 at GFZ Potsdam J.L. Chen 1, C.R. Wilson.
Closure of the Budget of Global Sea Level Rise Over the GRACE Era: The Importance and Magnitudes of the Corrections Required for Quaternary Ice-Age Influence.
Using Global Ocean Models to Project Sea Level Rise Robert Hallberg NOAA / GFDL.
(a) Pre-earthquake and (b) post-earthquake Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of North Sentinel Island. The.
Alaskan Mountain Glacial Melting Observed by GRACE 2006 WPGM, July , Beijing, China G32A-02 Wed. 11:05 AM J.L. Chen 1, B.D. Tapley 1, C.R. Wilson.
G. Marquart Gravity Effect of Plumes Geodynamik Workshop, Hamburg, Modeling Gravity Anomalies Caused by Mantle Plumes Gabriele Marquart Mantle.
Water storage variations from time-variable gravity data Andreas Güntner Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences Section.
Antarctic ice shelf thicknesses derived from satellite altimetry Jennifer Griggs and Jonathan Bamber Bristol Glaciology Centre, University of Bristol.
Data Requirements for a 1-cm Accurate Geoid
REGINA status update, 21 May 2015 Page 1 Regional glacial isostatic adjustment and CryoSat elevation rate corrections in Antarctica (REGINA) – Supplementary.
The effect of GIA models on mass-balance estimates in Antarctica Riccardo Riva, Brian Gunter, Bert Vermeersen, Roderik Lindenbergh and Hugo Schotman Department.
The Plausible Range of GIA Contributions to 3-D Motions at GPS Sites in the SNARF Network 2004 Joint AssemblyG21D-03 Mark Tamisiea 1, Jerry Mitrovica 2,
University of Kansas S. Gogineni, P. Kanagaratnam, R. Parthasarathy, V. Ramasami & D. Braaten The University of Kansas Wideband Radars for Mapping of Near.
A better GRACE solution for improving the regional Greenland mass balance Z Xu 1, E.J.O Schrama 1, W. van der. Wal 1 1 Department of Astrodynamics and.
Don Chambers Center for Space Research, The University of Texas at Austin Josh Willis Jet Propulsion Laboratory, California Institute of Technology R.
Department of Earth Sciences “A. Desio”
Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix.
An Ocean Tidal Inverse Model For Antarctic Ice Shelves:
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Closing the Global Sea Level.
Assessing the GIA Contribution to SNARF Mark Tamisiea, James Davis, and Emma Hill Proudman Oceanographic Laboratory Harvard-Smithsonian Center for Astrophysics.
Assessing the GIA Contribution to SNARF Mark Tamisiea and Jim Davis Harvard-Smithsonian Center for Astrophysics.
Don P. Chambers College of Marine Science University of South Florida Measuring Mean Ocean Mass Variability with GRACE NASA Sea Level Workshop, Austin.
Towards a standard model for present-day signals due to postglacial rebound H.-P. Plag, C. Kreemer Nevada Bureau of Mines and Geology and Seismological.
ESA living planet symposium Bergen Combination of GRACE and GOCE in situ data for high resolution regional gravity field modeling M. Schmeer 1,
Ingo Sasgen 1, Henryk Dobslaw 1, Zdenek Martinec 2, and Maik Thomas 1 (1) GeoForschungsZentrum Potsdam, Department 1: Geodesy and Remote Sensing Section.
Antarctic ice mass change estimates from GRACE: Results, uncertainties, and the combination with complementary information Martin Horwath, Reinhard Dietrich.
An oceanographic assessment of the GOCE geoid models accuracy S. Mulet 1, M-H. Rio 1, P. Knudsen 2, F. Siegesmund 3, R. Bingham 4, O. Andersen 2, D. Stammer.
Last Time: Introduction to Gravity Governed by LaPlace’s equation: with solution of the form: If we have a spherical body with mass M and constant (or.
ESA Climate Change Initiative Sea-level-CCI project A.Cazenave (Science Leader), G.Larnicol /Y.Faugere(Project Leader), M.Ablain (EO) MARCDAT-III meeting.
SC4MGV – ESA Contract No /13/NL/MV 5th International GOCE User Workshop November 2014, Paris, France ESA SC4MGV Search strategy for.
Greenland Ice Sheets CCI
Figure 1 Predictions of (a) polar wander speed, (c) polar wander direction and (e) as a function of lower-mantle viscosity, in which an elastic lithosphere.
Stable North American Reference Frame (SNARF): Version 1
By C. Haeger1,2, M. Kaban1, B. Chen3 & A. Petrunin1,4 June 15, 2017
An T Nguyen (MIT) Thomas A Herring (MIT)
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
Stable North American Reference Frame (SNARF): Version 1
Presentation transcript:

Page 1 ESA CliC workshop, Tromsø, 20 January 2015 Ingo Sasgen& REGINA consortium (Mark Drinkwater, ESA); V. Klemann, L. Petrie, P. Clarke, N. Schön, J. L. Bamber, R. Pail, M. Horwath, A. Horvath STSE CryoSat+ Cryosphere Study Regional glacial isostatic adjustment and CryoSat elevation rate corrections in Antarctica (REGINA) Contract-Nr.: /12/I-NB Contact: REGINA ( Ingo Sasgen (PI), Martin Horwath, Volker Klemann, Elizabeth J. Petrie, Nana Schoen, Roland Pail, Alexander Horvath, Jonathan L. Bamber, Peter J. Clarke, Hannes Konrad and Mark R. Drinkwater (ESA)

Page 2 ESA CliC workshop, Tromsø, 20 January 2015 Glacial-isostatic adjustment

Page 3 ESA CliC workshop, Tromsø, 20 January 2015 Ice sheet Bedrock Ocean Shelf Glacial-isostatic adjustment (GIA) Flow-line GIA simulation, example [1] Hannes Konrad, Ingo Sasgen, Volker Klemann (GFZ)

Page 4 ESA CliC workshop, Tromsø, 20 January 2015 Approaching GIA in Antarctica Hybrid GIA estimate Numerical modelling Earth / Ice models, Paleo observations etc. Earth observation GPS, GRACE, Altimetry GIA estimateGIA prediction e.g. Whitehouse et al Ivins & James 2005 (“IMBIE-models”) e.g. Riva et al. 2009, Gunter et al Sasgen et al REGINA aims: Determine GIA elevation rate correction for CryoSat-2 Investigate Crustal Low Viscosity Zone Employ multiple space-geodetic data sets

Page 5 ESA CliC workshop, Tromsø, 20 January 2015 Present and past ice-mass change Accumulation event Deglaciation since LGM

Page 6 ESA CliC workshop, Tromsø, 20 January 2015 Observation equations System of linear equations GRACE GPS ICESat/Env. Present mass change Past mass change Compaction (density ch.) Kernels*: Ice-elevation change Gravitational potential Bedrock displacement ElasticViscous Satellite observations Earth response * Filtered according to observation Consideration of Earth structures & Filtering Reprocessed data Solution with discs on geodesic grid

Page 7 ESA CliC workshop, Tromsø, 20 January 2015 Altimetry ICESat / Envisat combination for [1] Combination mask ICESat available only ICESat (smaller errors) Envisat (smaller errors) N. Schön, J. Bamber, Univ. Bristol 10 km gridded data

Page 8 ESA CliC workshop, Tromsø, 20 January 2015 Gravimetry A. Horvath, R. Pail (TU München), M. Horwath (TU Dresden)

Page 9 ESA CliC workshop, Tromsø, 20 January 2015 GPS displacements available unavailable partially available [1] L. Petrie (now Univ. Glasgow), P. Clarke (Newcastle Univ.) Trend estimation accounting for colored noise Review of metadata Test of processing options

Page 10 ESA CliC workshop, Tromsø, 20 January 2015 Geometrical set-up Shear velocity anomalies [1] with respect to PREM [2] Spatial distribution of discs East Ant. Rheology (200 km Elast. lith.) West Ant. Rheology (variable) 1175 discs Deviation (%) [1] Danesi & Morelli (2001); [2] Dziewonski & Anderson (1981) Earth structure dependent response kernels [3] [3] V. Klemann, I. Sasgen (GFZ) Possibility: GOCE constraints

Page 11 ESA CliC workshop, Tromsø, 20 January 2015 Step 1: first-order GIA estimate Removal of surface-mass contributions GRACE [1] Altimetry [1] [1] Post-processing I: Swenson & Wahr, Gaussian 200 km (GFZ RL05) = Different scale

Page 12 ESA CliC workshop, Tromsø, 20 January 2015 GIA estimate for Antarctica

Page 13 ESA CliC workshop, Tromsø, 20 January 2015 Influence of Earth structure WeakStrong Weak+Filtering IMBIE

Page 14 ESA CliC workshop, Tromsø, 20 January 2015 Separation of ice mass and GIA Ice-mass balance GIA estimate

Page 15 ESA CliC workshop, Tromsø, 20 January 2015 GIA apparent mass change (selection) But again: spread GIA corrections > GRACE signal REGINA : -63 to -75 Gt/yr (IMBIE: -72 Gt/yr)

Page 16 ESA CliC workshop, Tromsø, 20 January 2015 IOM validation of REGINA estimates IOM [1] mass balance:− 66 Gt/yr (c.f. Rignot, IOM-IMBIE: −142 Gt/yr) [1] Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt (2013), Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502(7469), REGINA mass balance: − 63 to -75 Gt/yr (Envisat/ICESat & GRACE combination)

Page 17 ESA CliC workshop, Tromsø, 20 January 2015 REGINA Phase 1 conclusions Combination algorithm Includes GRACE, Envisat/ICESat, GPS Accounts for different filtering / resolutions Solves for local density changes (no a priori model req.) Refined Earth structure considers Crustal low-viscosity zone East and West Antarctic rheology Low mantle viscosities (beyond IMBIE range; not shown) Results GIA apparent mass change of 26 to 38 Gt/yr Ice-mass balance of −63 to −75 Gt/yr (IMBIE –72 Gt/yr) Next steps: final GIA product in REGINA Phase 2 (08/2015)

Page 18 ESA CliC workshop, Tromsø, 20 January

Page 19 ESA CliC workshop, Tromsø, 20 January 2015 Apparent mass change of GIA IMBIE (not used)IMBIE (used)Post IMBIE GIA correction ICE-5GIJ05_R2W12aAGE1REGINAICE-6GIJ05_R2_5k Type Numerical prediction Geodetic estimate Numerical prediction Data set used Geomorphology, Paleoclimate, relative sea-level data (GIA) Geomorphology, Paleoclimate Ice-dynamics, Paleoclimate, geomorphology, relative sea-level data (GIA) GPS, GIA ensemble modelling ICESat/Envisa t, GRACE, GPS, GIA kernels Geomorphology, Paleoclimate, relative sea-level data (GIA) Geomorphology, Paleoclimate Spatial resolution (SH degree) provided Earth model assumptions Yes (implicit)Yes No Yes (implicit)Yes Reference Sasgen et al. 2013; doi: /tcd Ivins et al. 2013; doi: /jgrb Whitehouse et al. 2012b; doi: /j X x Sasgen et al. 2013; doi: /tcd science.eu Argus et al. 2014; doi: /gji/ggu14 0 Velicogna et al. AGU 2014, G51A-0343 Apparent mass change (Gt/yr) 140 to to 65ca to 38107ca. 120 GRACE minus REGINA GIA, GRACE minus REGINA GIA, to -75 Gt/yr (IMBIE: -72 Gt/yr) -100 to -112 Gt/yr

Page 20 ESA CliC workshop, Tromsø, 20 January 2015 CSR RL05 ICESat CSR ICESat CSR RL05 & ICESat [selected] Data availability Too noisy for GRACE Best Additional signals

Page 21 ESA CliC workshop, Tromsø, 20 January 2015 Geoid rate (e’) to disc load h l =90 km (thick) µ Ast. = Pa s (weak) Load + Elastic response Load + viscoelastic response Relaxation, without load J max =2048 (Model) Load + Elastic response Relaxation, without load Each line: response after +Δt = 10 yrs; Sim. period: 2 kyrs

Page 22 ESA CliC workshop, Tromsø, 20 January 2015 Displacement rate (u’) to disc load Elastic response Viscoelastic response Relaxation, without loading Each line: response after +Δt = 10 yrs; Sim. period: 2 kyrs Load dimension Elastic response Relaxation, without loading h l =90 km (thick) µ Ast. = Pa s (weak)

Page 23 ESA CliC workshop, Tromsø, 20 January 2015 Separation ice-mass and GIA (geoid) Filter 2: Statistical filter + Wiener filter Filter 1: REGINA Present-day ice-mass change GIA

Page 24 ESA CliC workshop, Tromsø, 20 January 2015 Radial displacement rate for disc load 3x10 19 Pa s (stiff) 90 km 3x10 19 Pa s (stiff) 30 km (strong) (weak) V. Klemann, I. Sasgen, GFZ Weaker lithosphere  more localized & greater amplitudes Viscosity not important within REGINA context “standard” West Antarctica “weak” West Antarctica Mention paper: GOCE

Page 25 ESA CliC workshop, Tromsø, 20 January 2015 Procedure of separation

Page 26 ESA CliC workshop, Tromsø, 20 January 2015 Step 2: Refinement with GPS

Page 27 ESA CliC workshop, Tromsø, 20 January 2015 Step 2: Refinement with GPS Viscous response (past loading) Elastic response (present loading) East Ant. rheol. West Ant. rheol. J max =2048 J max = 90 & 200 km Gaussian

Page 28 ESA CliC workshop, Tromsø, 20 January 2015 GRACE e’ vs. GPS u’ (Altim. removed) East Ant. rheol. West Ant. rheol.

Page 29 ESA CliC workshop, Tromsø, 20 January 2015 Elastic and viscoelastic kernels Axisymmetric disc load: 62 km radius, mass gain 5.6 Gt/yr Temporal evolution J max =2048 ~ 10 km Radius constant Load rate constant Viscoelastic Earth model: Martinec, 2000 V. Klemann, I. Sasgen, GFZ