1 Location management in wireless mobile network By:Ali Bohlooli Instructor: Dr Nasser Movahhedi nia Research Week 2007.

Slides:



Advertisements
Similar presentations
Chapter 7 1 Cellular Telecommunications Systems Abdulaziz Mohammed Al-Yami
Advertisements

Distributed Systems Major Design Issues Presented by: Christopher Hector CS8320 – Advanced Operating Systems Spring 2007 – Section 2.6 Presentation Dr.
IDMP-based Fast Handoffs and Paging in IP-based Cellular Networks IEEE 3G Wireless Conference, 2001 李威廷 11/22/2001 Telcordia.
1/10/20151 Mobile Computing COE 446 Network Operation Tarek Sheltami KFUPM CCSE COE Principles of Wireless.
Page 1 / 14 The Mesh Comparison PLANET’s Layer 3 MAP products v.s. 3 rd ’s Layer 2 Mesh.
Location Management in Cellular Networks By Priyanka Patel ( ) Instructor: Prof. Ivan Stojmenovic.
1G PERSONAL COMMUNICATION SYSTEMS: MOBILITY MANAGEMENT (PART II) Ian F. Akyildiz Broadband & Wireless Networking Laboratory School of Electrical and Computer.
Mobility Management in Mobile Wireless Systems Lecture 9.
Location and Handoff Management Lecture 10. Location and Handoff Management The current point of attachment or location of a subscriber (mobile unit)
On Reducing Communication Cost for Distributed Query Monitoring Systems. Fuyu Liu, Kien A. Hua, Fei Xie MDM 2008 Alex Papadimitriou.
CMPE 257 Spring CMPE 257: Wireless and Mobile Networking Spring 2002 Week 9.
1 A DATA MINING APPROACH FOR LOCATION PREDICTION IN MOBILE ENVIRONMENTS* by Gökhan Yavaş Feb 22, 2005 *: To appear in Data and Knowledge Engineering, Elsevier.
Online Data Gathering for Maximizing Network Lifetime in Sensor Networks IEEE transactions on Mobile Computing Weifa Liang, YuZhen Liu.
 The missing parts in the picture are the interactions between the PCS network and the PSTN.  This section briefly describes how mobile roaming is managed.
1 Connection Routing Schemes for Wireless ATM Proceedings of the 32nd Hawaii International Conference on System Sciences Upkar Varshney Computer.
CS401 presentation1 Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessibility Takahiro Hara Presented by Mingsheng Peng (Proc. IEEE.
1 Algorithms for Bandwidth Efficient Multicast Routing in Multi-channel Multi-radio Wireless Mesh Networks Hoang Lan Nguyen and Uyen Trang Nguyen Presenter:
Cellular IP: Proxy Service Reference: “Incorporating proxy services into wide area cellular IP networks”; Zhimei Jiang; Li Fung Chang; Kim, B.J.J.; Leung,
Network Topologies.
Lecture 1: Mobility Management in Mobile Wireless Systems Ing-Ray Chen CS 6204 Mobile Computing Virginia Tech Fall 2005.
The Zone Routing Protocol (ZRP)
Lecture 11: Cellular Networks
Mobile IP Performance Issues in Practice. Introduction What is Mobile IP? –Mobile IP is a technology that allows a "mobile node" (MN) to change its point.
A Theoretical Study of Optimization Techniques Used in Registration Area Based Location Management: Models and Online Algorithms Sandeep K. S. Gupta Goran.
1 Dynamic Adaption of DCF and PCF mode of IEEE WLAN Abhishek Goliya Guided By: Prof. Sridhar Iyer Dr. Leena-Chandran Wadia MTech Dissertation.
BY  INTRODUCTION  NEED FOR MOBILE TRACKING  EXISTING TECHNOLOGIES & CONSTRAINTS  LOCATION TRACKING CURVE METHOD  CONCLUSION.
Network Aware Resource Allocation in Distributed Clouds.
Mobile Technologies Introduction Basics of GSM Value Added Services SMS Short Codes Asterisk * LBS.
Location Management Schemes. Location Management: Context Mobility Management: Enables users to support mobile users, allowing them to move, while simultaneously.
Network: Location Management Y. Richard Yang 3/21/2011.
CELLULAR DATA NETWORKS Mr. Husnain Sherazi Lecture 5.
Multicast Routing Algorithms n Multicast routing n Flooding and Spanning Tree n Forward Shortest Path algorithm n Reversed Path Forwarding (RPF) algorithms.
Lecture 5: Cellular networks Anders Västberg Slides are a selection from the slides from chapter 10 from:
Managing Handoff. For operations and management to detect and isolating Handoff being particularly challenging, therefore it is important to understand.
Polytechnic University  M. Veeraraghavan 1 Location management Prof. Malathi Veeraraghavan Elec. & Comp. Engg. Dept/CATT Polytechnic University
Location Management. The trends in telecom are proceeding with a strong tendency towards increasing need of mobility in access links within the network.
User Cooperation via Rateless Coding Mahyar Shirvanimoghaddam, Yonghui Li, and Branka Vucetic The University of Sydney, Australia IEEE GLOBECOM 2012 &
PRESENTED BY A. B. C. 1 User Oriented Regional Registration- Based Mobile Multicast Service Management in Mobile IP Networks Ing-Ray Chen and Ding-Chau.
Mobile Computing Cellular Concepts. Cellular Networks Wireless Transmission Cellular Concept Frequency Reuse Channel Allocation Call Setup Cell Handoffs.
#1EETS 8316/NTU TC 745, Fall 2003 ENGINEERINGSMU Southern Methodist University Fall 2003 EETS 8316/NTU CC745-N Wireless Networks Lecture 2: Switching Network.
Locating Mobile Agents in Distributed Computing Environment.
Hybrid Cellular-Ad hoc Data Network Shuai Zhang, Ziwen Zhang, Jikai Yin.
1 Location Management in Cellular Networks Presented by Huiqi Zhang.
Location Management in PCS Networks Report of Dissertation By Manikanta Velaga (Adm. No ) Sanjoy Mondal (Adm. No ) M.Tech (CA)
CSE 598/494 – Mobile Computing Systems and Applications Class 13:Location Management Sandeep K. S. Gupta School of Computing and Informatics Arizona State.
Cell Zooming for Cost-Efficient Green Cellular Networks
Distributed Database. Introduction A major motivation behind the development of database systems is the desire to integrate the operational data of an.
Global Roaming in Next-Generation Networks Theodore B. Zahariadis, Konstantinos G. Vaxevanakis, Christos P. Tsantilas, and Nikolaos A. Zervos Ellemedia.
A Comparative Cost Analysis of Degradable Location Management Algorithms in Wireless Networks Ing-Ray Chen and Baoshan Gu Presented by: Hongqiang Yang,
Dual-Region Location Management for Mobile Ad Hoc Networks Yinan Li, Ing-ray Chen, Ding-chau Wang Presented by Youyou Cao.
K-Anycast Routing Schemes for Mobile Ad Hoc Networks 指導老師 : 黃鈴玲 教授 學生 : 李京釜.
Accommodating Bursts in Distributed Stream Processing Systems Yannis Drougas, ESRI Vana Kalogeraki, AUEB
KAIS T On the problem of placing Mobility Anchor Points in Wireless Mesh Networks Lei Wu & Bjorn Lanfeldt, Wireless Mesh Community Networks Workshop, 2006.
Kwangwoon Univ. Wireless and Mobile Network Architectures Intersystem Handoff and Authentication IS-41 오재준Nclab
Fast and Reliable Route Discovery Protocol Considering Mobility in Multihop Cellular Networks Hyun-Ho Choi and Dong-Ho Cho Wireless Pervasive Computing,
Design and Analysis of Optimal Multi-Level Hierarchical Mobile IPv6 Networks Amrinder Singh Dept. of Computer Science Virginia Tech.
On Integrated Location and Service Management for Minimizing Network Cost in Personal Communication Systems (by I R Chen, Baoshan Gu and S-T Cheng) Presented.
Efficient Resource Allocation for Wireless Multicast De-Nian Yang, Member, IEEE Ming-Syan Chen, Fellow, IEEE IEEE Transactions on Mobile Computing, April.
Accommodating mobility with direct routing
A Bandwidth Scheduling Algorithm Based on Minimum Interference Traffic in Mesh Mode Xu-Yajing, Li-ZhiTao, Zhong-XiuFang and Xu-HuiMin International Conference.
Movement-Based Check-pointing and Logging for Recovery in Mobile Computing Systems Sapna E. George, Ing-Ray Chen, Ying Jin Dept. of Computer Science Virginia.
Hierarchical Management Architecture for Multi-Access Networks Dzmitry Kliazovich, Tiia Sutinen, Heli Kokkoniemi- Tarkkanen, Jukka Mäkelä & Seppo Horsmanheimo.
DWAN ALSTON SMS TECHNOLOGY WHAT IS SMS????? SMS stands for Short Message Service. It is a technology that enables the sending and receiving of messages.
Authors: Jiang Xie, Ian F. Akyildiz
Cellular Networks Wireless Transmission Cellular Concept
Global System for Mobile Communications
Chapter 3: Wireless WANs and MANs
A Survey of Routing Techniques for Mobile Communication Networks
Effective Replica Allocation
EEL 6591 Wireless Networks Mobility Management
Presentation transcript:

1 Location management in wireless mobile network By:Ali Bohlooli Instructor: Dr Nasser Movahhedi nia Research Week 2007

2 Outline Introduction to Wireless Mobile Network Location Management Definition Location Management Solutions

3 Introduction

4

5 key components –Mobile terminal (MT) –Base station (BS) –Mobile switching center (MSC) –Home location register (HLR) –Visitor location register (VLR)

6 Introduction

7 Mobility Management –location management –handoff management What is location management doing? –location registration (or location update) –paging

8 Introduction Two standards for location management : –1. Interim Standard 41 (IS-41) (North America) –2. Global System for Mobile Communication (GSM ) Mobile Application Part (MAP) (Europe, Asia) Both standards are two-level database hierarchy

9 Introduction Update and paging trade off Location Area and paging Area

10 Updating

11 Time Based Updating

12 Movement Based Updating movement threshold of 3 is used

13 Distance Based Updating

14 Calling Procedure Call delivery 1.Determining the serving VLR of the called MT 2.Locating the visiting cell of the called MT (Paging) Determining the serving VLR of the called MT procedure 1.The calling MT sends a call initiation signal to the serving MSC of the MT through a nearby base station.

15 Introduction 2. The MSC determines the address of the HLR of the called MT by Global Title Translation and sends a location request message to the HLR. 3. The HLR determines the serving VLR of the called MT and sends a route request message to the VLR. This VLR then forwards the message to the MSC serving the MT. 4. The MSC allocates a temporary identifier called temporary local directory number (TLDN) to the MT and sends a reply to the HLR together with the TLDN. 5. The HLR forwards this information to the MSC of the calling MT.

16 Calling Procedure Locating the visiting cell of the called MT (Paging) 1.Polling signals are broadcast to all cells within the residing LA of the called MT. 2.On receiving the polling signal, the MT sends a reply which allows the MSC to determine its current residing cell.

17

18 Location Management for Cellular Networks 1.Pointer Forwarding: K = 2

19 Location Management for Cellular Networks 2. Local Anchoring:

20 Location Management for Cellular Networks(Cont.) 3. Pre-User Location Caching:

21 Location Management for Cellular Networks(Cont.) 5. User Profile Replication: –An MT's location is replicated at selected local databases to facilitate call delivery. –When a call for the MT originates from the service area of any replicated database, the call can be routed without querying the HLR, thus reducing the call delivery delay. –However, each time the MT changes its location all replicated databases need to be updated with the new location, triggering a high location update cost, especially for highly mobile users. –It favors users with a high call arrival rate relative to their mobility rate.

22 Location Management for Cellular Networks(Cont.) 6. Hybrid: –The local anchoring and replication techniques are integrated together to reduce the location tracking cost. –The VLR associated with the MT subscriber ' s home or office is selected as the local anchor where the MT reports its location change. Meanwhile, the local anchor's location is replicated at selected switches (called replicas) originating relatively high call rates to the MT. –Only when the MT changes its local signaling transfer point (LSTP) (MSC connects to the SS7 network via LSTP) region, its local anchor is changed, which requires the updating of both the HLR and the replicas. –The local anchor and replicas can supplement each other to reduce both the location update cost and the call setup delay. –Compared to the IS-41 strategy, the integrated strategy always results in a smaller tracking cost.

23 Location Management for Cellular Networks(Cont.) Distributed database architectures 1.One-root tree structure: –The location databases form a tree with the root at the top. Each database contains the location information of every MT residing in its subtree. All non-leaf databases maintain a pointer to an adjacent lower-level database regarding an MT's location. The leaf databases acting like the VLRs in the centralized structure contain the user service profiles for those MTs within their respective coverage areas. –When an MT's movement or call is local, i.e., the MT roams within the same or nearby LA or receives calls originating from the same or nearby LA, the upper-layer location databases are not accessed for the location update or call delivery. Thus, the access burden on the upper-level databases is alleviated and the end-to-end location update delay or call delivery delay is reduced. –The drawback: the crash of the root may paralyze the entire system and the root database may become overloaded as the number of mobile users increases.

24 Location Management for Cellular Networks(Cont.) 2. Multitree structure: –The whole location database system is organized into a multitree structure. which consists of a number of subsystems that assume the tree structure and connect to each other only through their root databases. –It overcomes the single point of failure issue in the one-root tree structure, since each root only maintains the profiles for those MTs residing in its service area and its failure does not affect the operation of other database subsystems. –It is also scalable in that as the capacity of a root database is saturated, a new subsystem is readily added while keeping the end- to-end delays in location registration and call delivery unchanged. –It is suitable for global mobile systems adopting a nongeographic personal telecommunication plan.

25 Location Management for Cellular Networks(Cont.) Comparison to the 2 Database Architectures –Centralized structure Advantages: –Easy adaptation to current PLMN networks. –The number of database updates and queries is relatively small. Disadvantages: –As the number of MTs increases, the signaling traffic may degrade the performance. –Distributed Structure Advantages: –reducing the access burden on the centralized HLR. Disadvantages: –The number of database accesses is increased. –No single scheme that clearly outperforms the others under all system parameters

26 Location Management for Cellular Networks(Cont.) Location Update –The location update determine when or where an MT should report its location to the network. –Static Schemes: e.g. IS-41. A location update is performed when a MT changes its LA. It cannot be adjusted based on the parameters of a MT from time to time. –Dynamic Schemes: It can be adjusted based on the parameters of a MT from time to time. Most of the recent research focus on the dynamic schemes.

27 Location Management for Cellular Networks(Cont.) 1.Profile-based: –The system maintains a list of the most probable LAs where an MT may be located. –As the MT moves between the LAs in the list, no location update is needed. Otherwise, the location update is performed according to the IS-41 scheme. –When an incoming call arrives, the MT is searched from the most to the least likely LA within its LA list. –This scheme requires that the LAs in the list be adjacent.

28 Location Management for Cellular Networks(Cont.) 2. Time-based: – A MT performs location updates periodically at given time intervals. –The time interval could be predefined or dynamically changed based on each user's location probability distribution or the system load. –One drawback of the time-based schemes is the difficulty of considering paging delay constraints while putting an upper bound on the paging cost.

29 Location Management for Cellular Networks(Cont.) 3. Movement-based: –A MT performs a location update whenever it completes a predefined number of movements across cell boundaries. –The MT may move back and forth between cells, thereby triggering un­necessary location updates. –An improved movement-based scheme was proposed to eliminate the unnecessary location updates, where when an MT revisits a cell, the movement counter value is reduced to the smaller counter value associated with the MT's previous visit of this cell. This mechanism not only eliminates repeated counts of movements into the same cell, but also counts out the movements since the last visit to the cell during the same location update period. This makes the movement counter reach the movement threshold more slowly than in the basic movement-based scheme.

30 Location Management for Cellular Networks(Cont.) 4. Distance-based: –A MT reports its location to the network when its distance from the last location update point exceeds a distance threshold. –A mechanism to compute the distance between two cells is required to implement this scheme. –A method was proposed to determine the distance between two arbitrary cells in the hexagonal configuration. –An irregular cell configuration would make the implementation of the distance-based scheme considerably more challenging.

31 Location Management for Cellular Networks(Cont.) 5. Group registration scheme: –Instead of sending individual location update requests to the HLR upon each LA change, the new location of all newly moved-in MTs to an LA since the last location update is reported to the HLR in a single location update request, which is conveyed to the HLR in the route response message of the next incoming call to any MT in the LA. –Upon an LA change, a forwarding pointer is set up from the MT's local anchor (which is pointed to from the HLR) to its current VLR, so that incoming calls to the MT can be delivered before the MT's local anchor is changed to its current VLR via the next group registration.

32 Location Management for Cellular Networks(Cont.) Terminal Paging –Search for and alert the intended MT of an incoming call. 1.Sequential paging: –The paging area is partitioned into several paging zones based on the user location probability distribution and the paging delay constraint. –As an incoming call arrives, the MT is searched sequentially from the most to the least likely paging zone. –If the MT is found in a paging zone, the paging process stops. –The user location probability distribution may not be readily available. –An intra-LA location update strategy was proposed to reduce the paging cost. When an MT moves between its anchor cell, where it usually stays for a long period, and the rest of the cells within its current LA, an intra-LA location update is performed at the serving VLR of the current LA. –As an incoming call arrives, either the anchor cell or the rest of the cells in the current LA is paged to locate the MT.

33 Location Management for Cellular Networks(Cont.) 2. Intelligent paging: –The physical information of an MT such as the most recent interaction point and velocity can be exploited to improve paging performance. –Paging related information is used to predict the most likely where about of an MT and the MT is searched in the most probable location first as an incoming call arrives. –Other factors such as traffic conditions and the cellular network topology may affect the accuracy of location prediction, and consequently the effectiveness of the intelligent paging strategy.

34 Location Management for Cellular Networks(Cont.) 3. Optimal paging: –The optimal search theory with discrete efforts was applied for paging an MT. –An optimal multi-step search plan is developed in such a way that the probability of detecting the MT on or before each step is maximized. –The execution of the optimal search plan requires that the system know the probability distribution of an MT in each cell within its current LA and the probabilities of the system failing to detect the MT on a single page in each cell given that the MT is in that cell.

35 Location Management for Cellular Networks(Cont.) 4. Concurrent paging: –Multiple MTs can be paged simultaneously at different cells within the same LA where these MTs reside. –An ensemble paging schedule should be designed in such a way that the overall average paging cost is minimized under the paging delay constraint. –Coordination among the pollings of the MTs should be provided to warrant that each MT is searched from the most to the least likely cell if each MT's location probability distribution is known. Otherwise, some heuristic algorithms can be applied to concurrently search the MTs.

36 Location Management for Cellular Networks(Cont.) Comparison to Static and Dynamic Schemes for Update and Paging –Static (e. g. IS-41): Advantage: Easy to implement Disadvantage: It cannot be adjusted according to the parameter of individual user. –Dynamic: Advantage: allow online adjustments based on the characteristics of each individual MT. Disadvantage: –Some required information such as the distance between cells is not available to the MTs. –Require significant computing power. Implementation of a computation intensive scheme in an MT may not be feasible.

37 Conclusion There is no straightforward solution that takes account of the multiplicity of location management requirements Various approaches from multiple angles have been proposed to achieve advanced location management towards a complete solution. Each approach has pros and cons and is probably not enough by itself. Therefore, an accommodative and efficient location management solution is called for by the next-generation wireless system.

38 References [1] I. F. AKYILDIZ, etc. Mobility Management in Next Generation Wireless Systems, Proceedings of the IEEE, Vol. 87, No. 8 August 1999, pp [2]. R. JAIN AND Y.-B. LIN, An auxiliary user location strategy employing forwarding pointers to reduce network impacts of PCS ; ACM-Baltzer Journal of Wireless Networks, vol. 1, no. 2, July 1995, pp [3]. J. S. M. Ho AND I. F. AKY1LDIZ, Local anchor scheme for reducing signaling costs in personal com­munications networks, IEEE/ACM Trans. on Networking, vol. 4, no. 5, Oct. 1996, pp [4]. R..IAIN. Y.-B. L1N. C. LO. AND S. MOHAN, A caching strategy to reduce network impacts of PCS, IEEE Journal on Selected Areas in Communications, vol. 12, no. 8, Oct. 1994, pp

39 References [5]. Z. MAO AND C. DOULIGERIS, An integrated strategy for reducing location management cost, IEEE Communications Letters, vol. 8, no. 1, Jan. 2004, pp [6]. N. SHIVAKUMAR, J. JANNINK, AND J. WIDOM. Per-user profile replication in mobile environments: Algorithms, analysis, and simulation results. ACM-Baltzer Journal of Mobile Networks and Applications, vol. 2, no. 2, Oct. 1997, pp [7]. Z. MAO AND C. DOULIGERIS, A distributed database architecture for global roaming in next-generation mobile networks, IEEE/ACM Trans. on Networking, vol. 12, no. 1, Feb. 2004, pp

40 References [8]. S. TAI3BANE, An alternative strategy for location tracking, IEEE Journal on Selected Areas in Communications, vol. 13, no. 5, June 1995, pp [9]. C. Rose, Minimizing the average cost of paging and registration: A timer-based method, ACM-Baltzer Journal of Wireless Networks, vol. 2, no. 2, 1996, pp [10]. A. BAR-NOY, I. KESSLER. AND M. SIDI, Mobile users: To update or not to update? ACM-Baltzer Journal of Wireless Networks, vol. 1, no. 2, July 1995, pp [11]. I. F. AKYILDIZ. J. S. M. Ho. AND Y.-B. L1N, Movement-based location update and selective pagings for PCS networks ; IEEE/ACM Trans. on Networking, vol. 4, no. 4. Aug. 1996, pp [12]. V. W. S. WONG AND V. C. M. LEUNG, An adaptive distance- based location update algorithm for next-generation PCS networks, IEEE Journal on Selected Areas in Communications, vol. 19, no. 10, Oct. 2001, pp

41 References [13]. Z. MAO AND C. DOULIGERIS, Group registration for reducing signaling traffic in location tracking, The 28th IEEE Local Computer Networks Conf. (LCN'2003), Bonn/Konigswinter, Germany, Oct , [14]. S. MISHRA AND O. K. TONGUZ, Analysis of intelligent paging in personal communication systems, Electronics Letters, January 1998, pp [15]. R. REZAIIFAR AND A. M. MAKOWSKI, from optimal search theory to sequential paging in cellular networks, IEEE J. Select. Areas Common., vol. 15, no. 7, Sept. 1997, pp [16]. R.H. GAU: AND Z. J. HAAS, Concurrent search of mobile users in cellular networks, IEEE/ACM Trans. on Networking, vol. 12, no. 1, Feb. 2004, pp [17]. Y. XIAO, A parallel shuffled paging strategy under delay bounds in wireless systems, IEEE Commu­nications Letters, vol. 7, no. 8, Aug. 2003, pp