T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,

Slides:



Advertisements
Similar presentations
Study of plastic scintillators for fast neutron measurements
Advertisements

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
GERDA: GERmanium Detector Array
K-Space Associates, Inc. kSA BandiT: Band-edge Thermometry.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Setup for large area low-fluence irradiations with quasi-monoenergetic 0.1−5 MeV light ions M. Laitinen 1, T. Sajavaara 1, M. Santala 2 and Harry J. Whitlow.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
Present and future activities of the Garching group (E15)
Proportional Light in a Dual Phase Xenon Chamber
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
21. October 2004 IDEA DBD Meeting, Heidelberg 150 Nd activities at TUM V. Lazarev 1, E. Nolte 1, L. Oberauer 1, F. Pröbst 2 1 -Technische Universität München,
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
Silicon  -Calorimeters at Saclay Main Architecture: All-Si STANDARD Technologies including collective approach for large (1024 pixels) buttable X-rays.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Cristina Cozzini (Oxford), IDM 2004, Edinburgh CRESST-II background discrimination: detection of 180 W natural decay in a pure alpha spectrum Paper submitted.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
Direct Dark Matter Searches
 Dark matter forms a giant sea, enclosing the milky way. The earth and solar system like a small fish, swimming in it.  Dark Matter particle has a small.
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
Large Area Microcalorimeters of the Diffuse X-ray Background Sarah Bank Towson University August 5, 2004.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Tracking Background GRETINA Software Working Group Meeting September 21-22, 2012, NSCL MSU I-Yang Lee Lawrence Berkeley National Laboratory.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
Search for new physics from the CERN Axion Solar Telescope (CAST) high-energy calorimeter David W. Miller Advisor: Juan I. Collar Bachelor’s thesis Defense.
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
ZEPLIN III Position Sensitivity PSD7, 12 th to 17 th September 2005, Liverpool, UK Alexandre Lindote LIP - Coimbra, Portugal On behalf of the ZEPLIN/UKDM.
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Test of 1kg point contact detector and CDEX-1 Data Analysis Process Wu Yucheng CDEX collaboration Development of High Purity Germanium Detector.
1 st : Mass Spectrometry on Heavy Molecules with Cryogenic Detectors - status Project Review 2004 PROTEOM 2 nd : Measurement of the Quenching Factors in.
Low Temperature Detector Design for the particle search Kim Seung Cheon (DMRC,SNU)
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Study of PC-HPGe detector for dark matter search CDEX collaboration Application of Germanium Detector in Fundamental Research Apr. 7-13,2013.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Leo Stodolsky 80th anniversary
From Edelweiss I to Edelweiss II
The CRESST Dark Matter Search Status Report
Cryogenic Particle Detectors in Rare event Searches
Pulse-shape discrimination with Cs2HfCl6 crystal
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Progress with cryogenic dark matter searches
CsI Compton Veto Detector for A low Mass WIMP Experiment
HE instrument and in-orbit performance
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
Presentation transcript:

T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini, P. Di Stefano, T. Frank, D.Hauff, F. Pröbst, W. Seidel, L. Stodolsky Technische Universität München F.v.Feilitzsch, T.Jageman, J.Jochum, M. Stark, H. Wulandari University of Oxford G. Angloher, N. Bazin, S.Cooper, R.Keeling, H.Kraus, Y.Ramachers Development of 300g scintillating calorimeters for WIMP searches

Outline Introduction WIMPs Cryo detectors Background discrimination Detector development Light detector Phonon detector Prototype module Summary and Future

WIMP direct detection Density:0.3 GeV/cm 3 Velocity: 230 km/s Mass: GeV range Interaction via elastic scattering on nuclei Very low event rates (< 1event /kg/keV/day) Transfered energy few keV  Very sensitive detector necessary  Very good shielding of background Low temperature detectors & underground setup

Setup

Particle interacts in the absorber Temperature rise in the thermometer proportional to deposited energy Superconducting to normal transition: small  T => relatively large  R Principle of low temperature calorimeters

138h live time run Results limited by residual background -> active background rejection Sapphire results

Simultaneous measurement of phonons and light Scintillating absorber crystal (CaWO 4, PbWO 4, BaF, BGO) with thermometer to detect phonons Very sensitive detector close by to detect light -> ratio of detected phonon signal versus light signal allows identification of interaction Phonon and Light Principle Reflector

6g CaWO 4 crystal with glued W thermometer Sapphire light detector with Si coating Al-mirrors Rejection 99.9% for E>20keV 99.7% for E>15keV 0.8% of total energy in light channel Proof of Principle No dead layer ! n

Goals: Same or better light collection as with 6g test module Threshold of module <10keV -> discrimination with >99% down to 10keV Challenges: Scintillation light only small fraction of total energy Large reflector surface requires very high reflectivity Large sensitive light detector with good absorption needed Scale up to 300g

Thin sapphire/silicon substrates W-thermometer Sputtered Si absorption layer (sapphire substrates) Special surface treatment of silicon wafers to reduce reflectivity Requirements: High sensitivity (< 100eV light) Large area Good absorption of emitted light Light detector X-ray hit in light detector Scintillation light from CaWO 4

Test in scintillation holder to check light collection Test with 6 keV source impinging on different spots to check threshold and uniformity 40x40x0.4mm³ light detector  Large sizes possible with good sensitivity & uniformity Light detector tests Scintillation 6 KeV

300g CaWO 45mK threshold ~10keV Problem: relatively high transition temperature decreases sensitivity -> interdiffusion barrier between crystal and W-film Background spectrum Heater for temperature stabilization & detector calibration Phonon detector

Holder: bilayer of polymeric and Al foil as reflector fragile CaWO 4 require shrinkage compensation light detector should be fully exposed for maximum sensitivity parasitic absorptions of light should be kept at a minimum Scintillation: 425nm FWHM 90nm 1.5 fold increase of light on cooling from room temperature to 4.2K Light yield strongly dependent on crystal quality Holder & Crystals [nm]

Diffusive reflector end cap (sintered Teflon) 300g CaWO 4 in specular reflector (reflecting plastic foil) Diffusive reflector end cap with 20x20 mm 2 light detector 300g module

detected No reflector reflectivity light detector light* ________________________________________________ I Al-mirrors sapphire 200mm 2 0.8% II teflon sapphire 130mm 2 1.2% 1 teflon 97.5% sapphire 130mm % 2 teflon 97.5% sapphire 200mm % 3 teflon&foil 98.7% sapphire 200mm % 4 foil bilayer 97.0%sapphire 400mm 2 0.5% 5 foil bilayer 97.0%silicon 400mm % 6 foil bilayer 97.0%silicon 400mm 2 etched0.7% 7 foil bilayer 97.0%silicon 900mm 2 1.3% -> better than proof of principle I & II with 6g CaWO with 300g CaWO 4 * In percent of deposited energy in CaWO 4 Silicon light detectors have better light absorption but stronger spatial dependence of response Results

new absorption layer for sapphire light detector improved layout and bonding scheme for light detectors test of new 300g detector module at Gran Sasso Projected sensitivity with 30kg years of data Next steps